Chapter 11.1 and 11.2

Exponents and Radicals

[Ch. 11.1: Simplifying Expressions with Integral Exponents

- In this section, we review the laws of exponents and the concept of the negative exponent.

Laws of Exponents

- Product Law: $\quad a^{m} \times a^{n}=a^{m+n}$
- Quotient Law: $\frac{a^{m}}{a^{n}}=a^{m-n} \quad m>n, \boldsymbol{a} \neq \mathbf{0}$

Give examples

$$
\frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}}
$$

$m<n, a \neq 0$
Collect on board

Laws of Exponents (continued)

- Power Law:

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

$$
(a b)^{n}=a^{n} b^{n}
$$

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad b \neq \mathbf{0}
$$

Zero \& Negative Exponents

- A zero exponent is defined by:

$$
a^{0}=1 \quad a \neq 0
$$

A negative exponent is defined by:

$$
a^{-n}=\frac{1}{a^{n}} \quad a \neq 0
$$

The Negative Exponent

- Negative exponents are generally not used in the expression of a final result, unless specified otherwise.
- When a factor is moved from the denominator to the numerator of a fraction, or conversely, the sign of the exponent is changed.

Example

- Express the given expression in simplest form with only positive exponents.

Examples

[? Ex 11.1 q 10,12,23,25

In Exercises 5-52, express each of the given expressions in simplest form with only positive exponents.
5. $x^{7} x^{-4}$
6. $y^{9} y^{-2}$
7. $2 a^{2} a^{-6}$
8. $5 s s^{-5}$
9. $5^{0} \times 5^{-3}$
11. $\left(2 \pi x^{-1}\right)^{2}$
(12.) $\left(3 x y^{-2}\right)^{3}$
(0.) $\left(3^{2} \times 4^{-3}\right)^{3}$
13. $2\left(5 a n^{-2}\right)^{-1}$
14. $4\left(6 s^{2} t^{-1}\right)^{-2}$
15. $(-4)^{0}$
17. $-7 x^{0}$
20. $(3 x)^{-2}$
18. $(-7 x)^{0}$
/16. -4^{0}
19. $3 x^{-2}$
21. $\left(7 a^{-1} x\right)^{-3}$
\checkmark 22. $7 a^{-1} x^{-3}$
(23) $\left(\frac{2}{n^{3}}\right)^{-3}$
24. $\left(\frac{3}{x^{3}}\right)^{-2}$
(25.) $3\left(\frac{a}{b^{-2}}\right)^{-3}$
10. $\left(3^{2} \times 4^{-3}\right)^{3}=\left(\frac{3^{2}}{4^{3}}\right)^{3}=\frac{3^{6}}{4^{9}}$
11. $\left(2 \pi x^{-1}\right)^{2}=\left(\frac{2 \pi}{x}\right)^{2}=\frac{4 \pi^{2}}{x^{2}}$
12. $\left(3 x y^{-2}\right)^{3}=3^{3} x^{3} y^{-6}=\frac{27 x^{3}}{6}$
13. $2\left(5 a n^{-2}\right)^{-1}=2 \times 5^{-1} a^{-1} n^{(-2)(-1)}=\frac{2 n^{2}}{5 a}$
14. $4\left(6 s^{2} t^{-1}\right)^{-2}=4\left(\frac{6 s^{2}}{t}\right)^{2}=\frac{4 \times 6^{-2} s^{-4}}{t^{-2}}=\frac{4 t^{2}}{6^{2} s^{4}}=\frac{t^{2}}{9 s^{4}}$
15. $(-4)^{0}=1$
16. $-4^{0}=-(1)=-1$
17. $-7 x^{0}=-7 \times 1=-7$
18. $(-7 x)^{0}=1$
19. $3 x^{-2}=3\left(\frac{1}{x^{2}}\right)=\frac{3}{x^{2}}$
20. $(3 x)^{-2}=3^{-2} x^{-2}=\frac{1}{9 x^{2}}$
21. $\left(7 a^{-1} x\right)^{3}=7^{-3} a^{3} x^{-3}=\frac{a^{3}}{7^{3} x^{3}}=\frac{a^{3}}{343 x^{3}}$
22. $7 a^{-1} x^{-3}=\frac{7}{a x^{3}}$
23. $\left(\frac{2}{n^{3}}\right)^{-3}=\frac{2^{-3}}{n^{-9}}=\frac{n^{9}}{8}$
24. $\left(\frac{3}{x^{3}}\right)^{-2}=\frac{3^{-2}}{x^{-6}}=\frac{x^{6}}{9}$
25. $\left(\frac{a}{b^{-2}}\right)^{-3}=\frac{3 a^{-3}}{\left(b^{-2}\right)^{-3}}=\frac{\frac{3}{a^{3}}}{b^{(-2)(-3)}}=\frac{\frac{3}{a^{3}}}{b^{6}}=\frac{3}{a^{3} b^{6}}$

Ch. 11.2: Fractional Exponents

- Radical \& Exponential Forms

Exponential Radical form
form

$$
\begin{gathered}
\sqrt{9}=\sqrt[2]{9}=9^{\frac{1}{2}}=3 \\
\sqrt[4]{6}=6^{\frac{1}{4}}
\end{gathered}
$$

Examples

$$
\begin{aligned}
& \text { 1. } \sqrt[3]{x}=x^{1 / 3} \\
& \text { 2. } \sqrt{x}=x^{1 / 2}
\end{aligned}
$$

Fractional Exponents

- If a fractional exponent is negative, it does not mean that the expression is negative.
- Example:

$$
y^{-1 / 2}=\frac{1}{y^{\frac{1}{2}}}=\frac{1}{\sqrt{y}}
$$

Fractional Exponents

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

- Applying the product law:

Example 1

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

Simplify:

$$
x^{2 / 3}=\left(x^{1 / 3}\right)^{2}=(\sqrt[3]{x})^{2}
$$

or, $\quad x^{2 / 3}=\left(x^{2}\right)^{1 / 3}=(3 \sqrt{x})^{2}$

Example 2

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

- Simplify:

$$
\begin{aligned}
27^{2 / 3} & =(\sqrt[3]{27})^{2} \\
& =(3 \sqrt{3 \times 3 \times 3})^{2} \\
& =3^{2} \\
& =9
\end{aligned}
$$

- Generally, it is easier to take the root first.

Examples

[? Ex 11.2, $7,13,21,28$

In Exercises 5-28, evaluate the given expressions.
5. $25^{1 / 2}$
6. $27^{1 / 3}$
(7.) $81^{1 / 4}$
11. $8^{-1 / 3}$
15. $5^{1 / 2} 5^{3 / 2}$
17. $\left(3^{6}\right)^{2 / 3}$
10. $-16^{5 / 4}$
(13.) $64^{-2 / 3}$
14. $-32^{-4 / 5}$
18. $\frac{121^{-1 / 2}}{100^{1 / 2}}$
(21.) $\frac{15^{2 / 3}}{5^{2} 15^{-1 / 3}} \quad$ 22. $\frac{(-27)^{1 / 3}}{6}$
25. $125^{-2 / 3}-100^{-3 / 2}$
27. $\frac{16^{-0.25}}{5}+\frac{2^{-0.6}}{2^{0.4}}$
19. $\frac{1000^{1 / 3}}{-400^{-1 / 2}}$
8. $125^{2 / 3}$
12. $16^{-1 / 4}$
16. $\left(4^{4}\right)^{3 / 2}$
20. $\frac{-7^{-1 / 2}}{6^{-1} 7^{1 / 2}}$
23. $\frac{(-8)^{2 / 3}}{-2}$
24. $\frac{-4^{-1 / 2}}{(-64)^{-2 / 3}}$
26. $32^{0.4}+25^{-0.5}$
(28. $\frac{4^{-1}}{36^{-1 / 2}}-\frac{5^{-1 / 2}}{5^{1 / 2}}$
7. $(81)^{1 / 4}=\sqrt[4]{81}=3$

$$
\begin{aligned}
& =\frac{\sqrt[2]{36}}{4}-\frac{1}{5} \\
& =\frac{6}{4}-\frac{1}{5}=\frac{3}{2}-\frac{1}{5} \\
& =\frac{3(5)-1(2)}{10} \\
& =\frac{15-2}{10}=\frac{13}{10}
\end{aligned}
$$

13. $64^{-2 / 3}=\frac{1}{\left(64^{1 / 3}\right)^{2}}=\frac{1}{(\sqrt[3]{64})^{2}}=\frac{1}{4^{2}}=\frac{1}{16}$
14. $\frac{15^{2 / 3}}{5^{2} \times 15^{-1 / 3}}=\frac{15^{2 / 3+1 / 3}}{5^{2}}=\frac{15^{1}}{25}=\frac{3}{5}$

$$
\begin{array}{ll}
a^{0}=1 & a^{1 / n}=\sqrt[n]{a} \\
a^{-n}=\frac{1}{a^{n}} \quad \begin{array}{c}
\text { Exponential } \\
\text { form }
\end{array} \\
\text { Radical \& Exponential Forms } \\
\end{array}
$$

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

$(a b)^{n}=a^{n} b^{n}$

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

$$
\sqrt{9}=\sqrt[2]{9}=9^{\frac{1}{2}}=3
$$

Worked examples

EXAMPLE 2 Simplifying basic expressions

(a) Applying Eqs. (2) and (5), we have

$$
\frac{a^{2} b^{3} c^{0}}{a b^{7}}=\frac{a^{2-1}(1)}{b^{7-3}}=\frac{a}{b^{4}}
$$

(b) Applying Eqs. (4) and (3), and then (6), we have

$$
\left(x^{-2} y\right)^{3}=\left(x^{-2}\right)^{3}\left(y^{3}\right)=x^{-6} y^{3}=\frac{y^{3}}{x^{6}}
$$

EXAMPLE 3 Removing perfect square factors

To simplify $\sqrt{75}$, we know that $75=(25)(3)$ and that $\sqrt{25}=5$. As in Eq. (10), we write

$$
\sqrt{75}=\sqrt{(25)(3)}=\sqrt{25} \sqrt{3}=5 \sqrt{3}
$$

This illustrates one step that should always be carried out in simplifying radicals: Always remove all perfect nth-power factors from the radicand of a radical of order n.

EXAMPLE 5 Reducing order of radical

(a) $\sqrt[6]{8}=\sqrt[6]{2^{3}}=2^{3 / 6}=2^{1 / 2}=\sqrt{2}$

Here, we started with a sixth root and ended with a square root, thereby reducing the order of the radical. Fractional exponents are often helpful for this.
(b) $\sqrt[8]{16}=\sqrt[8]{2^{4}}=2^{4 / 8}=2^{1 / 2}=\sqrt{2}$
(c) $\frac{\sqrt[4]{9}}{\sqrt{3}}=\frac{\sqrt[4]{3^{2}}}{\sqrt{3}}=\frac{3^{2 / 4}}{3^{1 / 2}}=1$
(d) $\frac{\sqrt[6]{8}}{\sqrt{7}}=\frac{\sqrt[6]{2^{3}}}{\sqrt{7}}=\frac{2^{1 / 2}}{7^{1 / 2}}=\sqrt{\frac{2}{7}}$
(e) $\sqrt[9]{27 x^{6} y^{12}}=\sqrt[9]{3^{3} x^{6} y^{9} y^{3}}=3^{3 / 9} x^{6 / 9} y^{9 / 9} y^{3 / 9}=3^{1 / 3} x^{2 / 3} y y^{1 / 3}$

$$
=y \sqrt[3]{3 x^{2} y}
$$

EXAMPLE 6 Rationalizing denominator

To write $\sqrt{\frac{2}{5}}$ in an equivalent form in which the denominator is not included under the radical sign, we create a perfect square in the denominator by multiplying the numerator and the denominator under the radical by 5 . This gives us $\sqrt{\frac{10}{25}}$, which may be written as $\frac{1}{5} \sqrt{10}$ or $\frac{\sqrt{10}}{5}$. These steps are written as follows:

$$
\sqrt{\frac{2}{5}}=\sqrt{\frac{2 \times 5}{5 \times 5}}=\sqrt{\frac{10}{25}}=\frac{\sqrt{10}}{\sqrt{25}}=\frac{\sqrt{10}}{5}
$$

EXAMPLE 8 Rationalizing expression-application

The period T (in s) for one cycle of a simple pendulum is given by $T=2 \pi \sqrt{L / g}$, where L is the length of the pendulum and g is the acceleration due to gravity. Rationalize the denominator on the right side of this equation if $L=3.0 \mathrm{ft}$ and $g=32 \mathrm{ft} / \mathrm{s}^{2}$.

Substituting, and then rationalizing, we have

$$
\begin{aligned}
T & =2 \pi \sqrt{\frac{3.0}{32}}=2 \pi \sqrt{\frac{3.0 \times 2}{32 \times 2}} \\
& =2 \pi \sqrt{\frac{6.0}{64}}=\frac{2 \pi}{8} \sqrt{6.0} \\
& =\frac{\pi}{4} \sqrt{6.0}=1.9 \mathrm{~s}
\end{aligned}
$$

EXAMPLE 1 Meaning of fractional exponent

We now verify that Eq. (1) holds for the above definitions:

$$
a^{1 / 4} a^{1 / 4} a^{1 / 4} a^{1 / 4}=a^{(1 / 4)+(1 / 4)+(1 / 4)+(1 / 4)}=a^{1}
$$

Now, $a^{1 / 4}=\sqrt[4]{a}$ by definition. Also, by definition, $\sqrt[4]{a} \sqrt[4]{a} \sqrt[4]{a} \sqrt[4]{a}=a$. Equation (1) is thereby verified for $n=4$ in Eq. (7).

Equation (3) is verified by the following:

$$
\left(a^{1 / 4}\right)\left(a^{1 / 4}\right)\left(a^{1 / 4}\right)\left(a^{1 / 4}\right)=\left(a^{1 / 4}\right)^{4}=a^{1}=(\sqrt[4]{a})^{4}
$$

EXAMPLE 2 Interpretation of fractional exponent

$$
8^{2 / 3}=(\sqrt[3]{8})^{2}=(2)^{2}=4 \quad \text { or } \quad 8^{2 / 3}=\sqrt[3]{8^{2}}=\sqrt[3]{64}=4
$$

EXAMPLE 4 Evaluating

(a) $(16)^{3 / 4}=\left(16^{1 / 4}\right)^{3}=2^{3}=8$
(b) $4^{-1 / 2}=\frac{1}{4^{1 / 2}}=\frac{1}{2}$
(c) $9^{3 / 2}=\left(9^{1 / 2}\right)^{3}=3^{3}=27$

We note in (b) that Eq. (6) must also hold for negative rational exponents. In writing $4^{-1 / 2}$ as $1 / 4^{1 / 2}$, the sign of the exponent is changed.

EXAMPLE 7 Simplifying expressions

(a) $\left(8 a^{2} b^{4}\right)^{1 / 3}=\left[\left(8^{1 / 3}\right)\left(a^{2}\right)^{1 / 3}\left(b^{4}\right)^{1 / 3}\right]$
using Eq. (4)

$$
=2 a^{2 / 3} b^{4 / 3}
$$

(b) $a^{3 / 4} a^{4 / 5}=a^{3 / 4+4 / 5}=a^{31 / 20}$
(c) $\left(\frac{4^{-9 / 2} x^{2 / 3}}{2^{3 / 2} x^{-1 / 3}}\right)^{2 / 3}=\left(\frac{x^{2 / 3} x^{1 / 3}}{2^{3 / 2} 4^{9 / 2}}\right)^{2 / 3}$

> using Eqs. (7) and (3)
using Eq. (1)

$$
=\left(\frac{x^{2 / 3+1 / 3}}{2^{3 / 2} 4^{9 / 2}}\right)^{2 / 3}
$$

using Eq. (6)
$=\frac{x^{(1)(2 / 3)}}{2^{(3 / 2)(2 / 3)} 4^{(9 / 2)(2 / 3)}}$
using Eq. (4)

$$
=\frac{x^{2 / 3}}{(2)\left(4^{3}\right)}=\frac{x^{2 / 3}}{128}
$$

(d) $\left(4 x^{4}\right)^{-1 / 2}-3 x^{-3}=\frac{1}{\left(4 x^{4}\right)^{1 / 2}}-\frac{3}{x^{3}}$
using Eq. (6)

$$
=\frac{1}{2 x^{2}}-\frac{3}{x^{3}}=\frac{x-6}{2 x^{3}}
$$

