Chapter 13

Exponential and Logarithmic Functions

[Ch 13.1: The Exponential Function

From Chapter 11 - any rational number can be used as an exponent.

- We now let the exponent be a variable so we can define the exponential function as:

The Exponential Function

Evaluate the function $y=-2\left(4^{x}\right)$ for the given values of x.
(a) If $x=2, y=-2\left(4^{2}\right)=-2(16)=-32$.
(b) If $x=-2, y=-2\left(4^{-2}\right)=-2 / 16=-1 / 8$.
(c) If $x=3 / 2, y=-2\left(4^{3 / 2}\right)=-2(8)=-16$.

Example...

Plot the graph of:

Examples to try...

In Exercises 7-12, evaluate the exponential function $y=9^{x}$ for the given values of x.
7. $x=0.5$
8. $x=4$
9. $x=-2$
10. $x=-0.5$
11. $x=-3 / 2$
12. $x=5 / 2$

In Exercises 13-18, plot the graphs of the given functions.

$$
\begin{array}{lll}
\text { 13. } y=4^{x} & \text { 14. } y=0.25^{x} & \text { 15. } y=0.2\left(10^{-x}\right) \\
\text { 16. } y=-5\left(1.6^{-x}\right) & \text { 17. } y=0.5 \pi^{x} & \text { 18. } y=2 e^{x}
\end{array}
$$

Ch. 13.2: Logarithmic Functions

- How do we solve equations where the exponent is the unknown?
- For example:
- The formula for the growth of bacteria is $n=1500(2)^{t}$ where n is the number of bacteria in t hours. How long will it take for 50000 bacteria to grow?
- That is: $50000=1500(2)^{t}$
- We use logarithms to find the answer.

How do they look?

Logarithmic functions are the inverses of exponential functions

Logarithmic Functions

- Forms of a logarithm:

- Remember, exponents can be negative.

Graphing Logarithmic Functions

- Graphing: $y=\log _{10} x$
- Note the vertical asymptote along the negative y axis where the graph never touches.

[Basic Features of Logarithmic Functions (b>1)

1. The domain is $\boldsymbol{x}>\mathbf{0}$; the range is all values of y.
2. The negative y-axis is an asymptote of graph of $y=\log _{b} x$.
3. If $0<x<1, \log _{b} x<0$; if $x=1, \log _{b} x=0$; if $x>1, \log _{b} x>0$.
4. If $\boldsymbol{x}>\mathbf{1}, \boldsymbol{x}$ increases more rapidly than $\log _{b} x$.

? Ex 13.2 q 7, 14, 16, 25, 30

EXERCISES 13.2

In Exercises 1-4, perform the indicated operations if the given changes are made in the indicated examples of this section.

1. In Example 3(b), change the exponent to $4 / 5$ and then make any other necessary changes.
2. In Example 4(b), change the $1 / 2$ to $5 / 2$ and then make any other necessary changes.
3. In Example 6, change the logarithm base to 4 and then make any other necessary changes.
4. In Example 7, change the logarithm base to 4 and then plot the graph.

In Exercises 5-16, express the given equations in logarithmic form.
5. $3^{3}=27$
6. $5^{2}=25$
(7. $4^{4}=256$
8. $2^{7}=128$
9. $7^{-2}=\frac{1}{49}$
10. $3^{-2}=\frac{1}{9}$
11. $2^{-6}=\frac{1}{64}$
12. $(12)^{0}=1$
13. $8^{1 / 3}=2$
14. $(81)^{3 / 4}=27$
15. $\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$
(16. $\left(\frac{1}{2}\right)^{-2}=4$

In Exercises 17-28, express the given equations in exponential form.
17. $\log _{3} 81=4$
18. $\log _{11} 121=2$
19. $\log _{9} 9=1$
20. $\log _{15} 1=0$
21. $\log _{25} 5=\frac{1}{2}$
22. $\log _{8} 16=\frac{4}{3}$
23. $\log _{243} 3=0.2$
24. $\log _{32}\left(\frac{1}{8}\right)=-0.6$
25.) $\log _{10} 0.1=-1$
26. $\log _{7}\left(\frac{1}{49}\right)=-2$
27. $\log _{0.5} 16=-4$
28. $\log _{1 / 3} 3=-1$

In Exercises 29-44, determine the value of the unknown.
29. $\log _{4} 16=x$
30. $\log _{5} 125=x$

A

7. $4^{1}=256$ has base 4 , exponent 4 , and number 256 . $\log _{4} 256=4$
8. $\log _{10} 0.1=-1$ has base 10 , exponent -1 , and number 0.1 .
$0.1=10^{-1}$
9. $\log _{5} 125=x$ has base 5 , exponent x, and number 125 .

$$
5^{x}=125, x=3
$$

16. $\left(\frac{1}{2}\right)^{-2}=4$ has base $\frac{1}{2}$, exponent -2 , and number 4 .
$\log _{1 / 2} 4=-2$

Ch. 13.3: Properties of Logarithms

- Since a logarithm is an exponent, the properties of logarithms will be similar to those of exponents.
- We will compare the laws of exponents with the laws of logarithms.

Logarithm of a Product

- Product Law of Exponents

$$
\begin{aligned}
& \boldsymbol{b}^{u} \times \boldsymbol{b}^{v} \\
& =\boldsymbol{b}^{u+v}
\end{aligned}
$$

- The Logarithm of a Product

$$
\begin{aligned}
& \log _{b}(u \times v) \\
= & \log _{b} u+\log _{b} v
\end{aligned}
$$

Logarithm of a Product

- Example 1:
- Write as the sum or difference of 2 or more logarithms.

$$
\log 5 x=\log 5+\log x
$$

- Example 2:
- Express as a single logarithm with a coefficient of 1 .

$$
\log 2+\log 4=\log (2 \times 4)=\log 8
$$

Logarithm of a Quotient

- Quotient Law of Exponents

$$
b^{u} \div b^{v}
$$

$$
=\boldsymbol{b}^{u-v}
$$

- Logarithm of a Quotient

$$
\begin{gathered}
\log _{b}(u \div v) \\
=\log _{b} u-\log _{b} v
\end{gathered}
$$

Logarithm of a Quotient

Write as the sum or difference of 2 or more logarithms.

- Example 3: $\quad \log (x / 5)=\log x-\log 5$
- Example 4:

$$
\begin{aligned}
\log \left(\frac{11 x}{6 y}\right) & =\log 11 x-\log 6 y \underbrace{\text { Cof brackets? }}_{\circ}) \\
& =(\log 11+\log x)-(\log 6+\log y)
\end{aligned}
$$

Logarithm of a Quotient

- Example 5:

Express as a single logarithm with a coefficient of 1 .

$$
\log 2+\log 6-\log 4
$$

$$
=\log (2 \times 6)-\log 4
$$

$$
=\log 12-\log 4
$$

$=\log \frac{12}{4}=\log 3$

Logarithm of a Power

- Power Law of Exponents

- Logarithm of a Power

$$
\left(\boldsymbol{b}^{u}\right)^{n}=\boldsymbol{b}^{u \times n}
$$

$$
\begin{gathered}
\log _{b} u^{n} \\
=n \log _{b} u
\end{gathered}
$$

Logarithm of a Power

- Example 6:

$$
\log 3^{12}=12 \log 3
$$

- Example 7: $\log 3^{y}=y \log 3$
- Example 8:

Solve: $10=\log \mathrm{u}^{5}$

Properties of Logarithms

- Example 9:

Express as a single logarithm with a coefficient of 1 .

$$
\begin{aligned}
& 3 \log x-2 \log y+5 \log z \\
= & \log x^{3}-\log y^{2}+\log z^{5}
\end{aligned}
$$

$$
=\log \left(\frac{x^{3}}{y^{2}}\right)+\log z^{5}=\log \left(\frac{x^{3} z^{5}}{y^{2}}\right)
$$

Summary

- Remember the Order of Operations when working with the properties of logarithms.
Avoid clearing your calculator screen after each calculation.

Examples

In Exercises 9-20, express each as a sum, difference, or multiple of logarithms. See Example 2.
9. $\log _{5} 33$
11. $\log _{7}\left(\frac{5}{3}\right)$
13. $\log _{2}\left(a^{3}\right)$
15. $\log _{6} a b c$
17. $8 \log _{5} \sqrt[4]{y}$
19. $\log _{2}\left(\frac{\sqrt{x}}{a^{2}}\right)$

In Exercises 21-28, express each as the logarithm of a single quantity. See Example 3.
10. $\log _{3} 14$
12. $\log _{3}\left(\frac{2}{11}\right)$
14. $2 \log _{8}\left(n^{5}\right)$
(16. $\log _{2}\left(\frac{x y}{z^{2}}\right)$
18. $\log _{4} \sqrt[7]{x}$
20. $\log _{3}\left(\frac{\sqrt[3]{y}}{7}\right)$
21. $\log _{b} a+\log _{b} c$
23. $\log _{5} 9-\log _{5} 3$
25. $-\log _{b} \sqrt{x}+\log _{b} x^{2}$
27. $2 \log _{e} 2+3 \log _{e} \pi$
22. $\log _{2} 3+\log _{2} x$
24. $-\log _{8} R+\log _{8} V$
26. $\log _{4} 3^{3}+\log _{4} 9$
28. $\frac{1}{2} \log _{b} a-2 \log _{b} 5$

A

14. $2 \log _{8}\left(n^{5}\right)=10 \log _{8} n$

$$
\text { 16. } \begin{aligned}
\log _{2}\left(\frac{x y}{x^{2}}\right) & =\log _{2} x y-\log _{2} z^{2} \\
& =\log _{2} x+\log _{2} y-2 \log _{2} z
\end{aligned}
$$

25. $-\log _{b} \sqrt{x}+\log _{b} x^{2}=\log _{b} \frac{x^{2}}{x^{1 / 2}}=\log _{b} x^{3 / 2}$

Useful equations for the rest of the chapter

$\begin{array}{cc}\log _{b}(u \times v) \\ =\log _{b} u+\log _{b} v & \log _{b} u^{n} \\ & =n \log _{b} u\end{array}$

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

$$
\log _{b}(u \div v)
$$

$$
=\log _{b} u-\log _{b} v
$$

$$
\begin{aligned}
& \log _{b} b=1 \\
& \log 10=1 \\
& \ln e=1
\end{aligned}
$$

[Ch. 13.4: Logarithms to the Base 10

- A common logarithm has a base of $\mathbf{1 0}$.

$$
\log _{10} \mathrm{~N}=\log \mathrm{N}
$$

- If there is no base identified in the logarithmic form, then assume it is to the base 10.

Common Logarithms

Calculator Use:

Common Logarithms

- Example:
- Find $\log \mathbf{N}$ if $\mathbf{N}=\mathbf{2 6 0}$.
- Solution:
- Rounding to 3 decimal places, $\log 260=2.415$.

Common Logarithms

- Remember, when you are finding the logarithm of a number, you are finding the power to which 10 must be raised to give the answer.
- For example, $\log 260=2.415$ means

$$
10^{2.415}=260
$$

Finding Antilogarithms

- Given: $\log \mathbf{N}=2.415$
- What is \mathbf{N} ?
- Rearranging this into exponential form, $10{ }^{2.415}=\mathbf{N}$
- We use the $\mathbf{1 0}^{\boldsymbol{x}}$ key on the calculator to find the answer.
- $\mathrm{N}=260$

Summary

- Common logarithms are logarithms to the base 10 .
They are readily calculated using a scientific calculator that has been preprogrammed for common logarithms.
- We use the properties of logarithms to solve equations using common logarithms

Examples

? Ex 13.4 q 9,15

In Exercises 3-12, find the common logarithm of each of the given numbers by using a calculator.
3. 567
4. 0.0640
5. 9.24×10^{6}
6. 3.19^{3}
7. 1.174^{-4}
8. 8.043×10^{-8}
9. $\cos 12.5^{\circ}$
10. $\tan 12.6$
11. $\sqrt{274}$
12. $\log _{2} 16$

In Exercises 13-20, find the antilogarithm of each of the given logarithms by using a calculator.

13. 4.437	14. 0.929	15. -1.3045	16. -6.9788
17. 3.30112	18. 8.82436	19. -2.23746	20. -10.336

9. $\log \left(\cos 12.5^{\circ}\right)=-0.0104$

10. $10^{-1.3045}=0.04960$

Ch. 13.5: Natural Logarithms

- A natural logarithm has a base of e.

$$
\log _{e} \mathrm{~N}=\ln \mathrm{N}
$$

- Natural logarithms have widespread application in science and business.

Natural Logarithms

Calculator Use:

Useful equations for the rest of the chapter

$\begin{array}{cc} & \log _{b}(u \times v) \\ = & \log _{b} u+\log _{b} v\end{array} \quad \begin{gathered}\log _{b} u^{n} \\ \\ = \\ \end{gathered}$

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

$$
\log _{b}(u \div v)
$$

$$
=\log _{b} u-\log _{b} v
$$

$$
\begin{aligned}
& \log _{\mathrm{b}} \mathrm{~b}=1 \\
& \log 10=1 \\
& \ln e=1
\end{aligned}
$$

Natural Logarithms

- Example:
- Find $\ln \mathbf{N}$ if $\mathbf{N}=260$.
- Answer:
- To three decimal places: $\boldsymbol{l n} 260=5.561$

Natural Logarithms

- Remember, when you are finding the logarithm of a number, you are finding the power to which e must be raised to give the answer.
- For example, $\ln 260=\mathbf{5 . 5 6 1}$ means $e^{5.5607}=260$

Natural Logarithms

- Example:
- Find \mathbf{N} if $\ln \mathbf{N}$ is: 0.367
- Solution:
- We take the antilogarithm of $\ln \mathbf{N}$
- This gives us: $\boldsymbol{e}^{0.367}=1.443$
- Therefore, $\boldsymbol{\operatorname { l n }} 1.443=0.367$

Converting Logarithms

- Scientific calculators are programmed for logarithms in bases 10 \& e.
- We can solve any logarithm to a different base using the equation:

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Converting Logarithms

- Example: Find $\log _{2} 75$.
- Solution: We will find the answer in base 10.

\[

\]

Summary

- Natural logarithms are logarithms to the base e.
They are readily calculated using a scientific calculator that has been preprogrammed for natural logarithms.
We use the properties of logarithms to solve equations using natural logarithms

Examples

? Ex 13.5 q 19, 27

In Exercises 15-22, find the natural logarithms of the given numbers.
15. 51.4
16. 293
17. 1.394
18. 6552
19. 0.9917
22. $\sqrt{0.000060808}$

In Exercises 27-34, find the natural antilogarithms of the given logarithms.

27. 2.190	28. 5.420	29. 0.0084210
30. 0.632	31. -0.7429	32. -2.94218
33. -23.504	34. -0.00804	

19. $\ln 0.9917=-0.008335$
20. $e^{2190}=8.935$

Ch. 13.6: Exponential and Logarithmic Equations

- In the fields of electronics and business, we are called upon to solve equations containing variable exponents or logarithms in some or all of the terms.

[Solving Exponential \& Logarithmic Equations

Our tools:

1. Converting between exponential form and logarithmic forms.
2. The Properties of Logarithms
3. The Identities in Logarithms.
4. Taking the logarithm of both sides.

$$
\ln \left(e^{n}\right)=n \quad e^{(\ln n)}=n
$$

$$
\log \left(10^{n}\right)=n
$$

$$
10^{(\log n)}=n
$$

Radioactive decay

$$
N=N_{0} e^{\frac{-0.693 t}{T_{1 / 2}}}
$$

$\mathrm{N}=$ Number at time t
$\mathrm{N}_{0}=$ Number at time t_{0}
$\mathrm{T}_{1 / 2}=$ half life

If a source has a half life of 2000yrs. How many years will it take to decay to 10% of its original value?

$$
\begin{gathered}
\frac{1}{10}=e^{\frac{-0.693 t}{T_{1 / 2}}} \ln (0.1)=\frac{-0.693 t}{2000} \\
t=6,645 \mathrm{yrs}
\end{gathered}
$$

The Identities in Logarithms

- We use the identity: $\log _{\mathrm{b}} \mathbf{b}=\mathbf{1}$
- In common logarithms, this is $\log 10=1$.
- In natural logarithms, this is $\ln e=1$.

$$
\begin{gathered}
b^{x}=y \text { then } x=\log _{b} y \\
\log _{b}(u v)=\log _{b}(u)+\log _{b}(v) \\
\log _{b}\left(\frac{u}{v}\right)=\log _{b}(u)-\log _{b}(v) \\
\log _{b} u^{n}=n \log _{b}(u) \\
\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \\
\log _{e} x=\ln x
\end{gathered}
$$

Exponential Equations

Example 1:

$$
\log _{b} u^{n}=n \log _{b}(u)
$$

- Solve for $x . \quad 2^{3 x-1}=6$
- Solution:
- Take the logarithm of both sides. $\log \left(2^{3 x-1}\right)=\log 6$
- Apply the power law of logarithms.
$(3 x-1) \log 2=\log 6$
- Solve. $x=1.19$ (:to 2 decimal places)

Logarithmic Equations

1. We use algebra to isolate the logarithm with the unknown in it (x).
2. We convert the logarithmic equation into its exponential counterpart.

Logarithmic Equations

Example 2:

- $\log _{x} 64=3$
- $x^{3}=64$
- $\boldsymbol{x}=4$

Example 3:

- $\log _{49} x=1 / 2$
- $49^{1 / 2}=x$
- $\boldsymbol{x}=7$

$$
\begin{gathered}
b^{x}=y \text { then } x=\log _{b} y \\
\log _{b}(u v)=\log _{b}(u)+\log _{b}(v) \\
\log _{b}\left(\frac{u}{v}\right)=\log _{b}(u)-\log _{b}(v) \\
\log _{b} u^{n}=n \log _{b}(u) \\
\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \\
\log _{e} x=\ln x
\end{gathered}
$$

Logarithmic Equations

$$
\begin{gathered}
b^{x}=y \text { then } x=\log _{b} y \\
\log _{b}(u v)=\log _{b}(u)+\log _{b}(v) \\
\log _{b}\left(\frac{u}{v}\right)=\log _{b}(u)-\log _{b}(v) \\
\log _{b} u^{n}=n \log _{b}(u) \\
\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \\
\log _{e} x=\ln x
\end{gathered}
$$

Example 4:

- $\quad \ln x-\ln x^{2}=\ln 27$
- $x=1 / 27$

Example 5:

- $\log \left(x^{2}-9\right)-1=\log (x+3)$
- $\boldsymbol{x}=13$

$$
\log \left(x^{2}-9\right)-1=\log (x+3)
$$

note $\log (0)$ is undefined $x \neq-3$

$$
\begin{array}{ll}
\log \left(x^{2}-9\right)-\log (x+3) & =1 \\
\log \left(\frac{x^{2}-9}{x+3}\right)=1 & x^{2}-9=10 x+30 \\
10^{\left(\log \left(\frac{x^{2}-9}{x+3}\right)\right)}=10 & x^{2}-10 x-39=0 \\
\frac{x^{2}-9}{x+3}=10 & (x-13)(x+3)=0 \\
& x=13
\end{array}
$$

Summary

- Exponential \& logarithmic equations are readily solved when we:

1. convert between exponential form and logarithmic forms.
2. apply the Properties of Logarithms
3. apply the Identities in Logarithms.
4. in some instances, take the logarithm of both sides.

Examples

? Ex 13.6 22, 29

6. $\pi^{x}=15$

$$
\text { 7. } 3^{-x}=0.525
$$

9. $6^{x+1}=78$
10. $0.8^{x}=0.4$
11. $3 \log _{8} x=-2$
12. $\log x^{2}=(\log x)^{2}$
13. $\log _{2} x+\log _{2} 7=\log _{2} 21$
14. $2 \log (3-x)=1$
15. $\log 12 x^{2}-\log 3 x=3$
16. $3 \ln 2+\ln (x-1)=\ln 24$
17. $\frac{1}{2} \log (x+2)+\log 5=1$
18. $\log (2 x-1)+\log (x+4)=1$
19. $\ln (2 x-1)-2 \ln 4=3 \ln 2$
20. $3 \log (2 x-1)=1$

$$
\begin{aligned}
\log (2 x-1) & =\frac{1}{3} \\
2 x-1 & =10^{1 / 3}=2.154 \\
2 x & =2.154+1=3.154 \\
x & =\frac{3.154}{2}=1.58
\end{aligned}
$$

29. $\log (2 x-1)+\log (x+4)=1$

$$
\begin{aligned}
\log [(2 x-1)(x+4)] & =1 \\
(2 x-1)(x+4) & =10 \\
2 x^{2}+7 x-4 & =10 \\
2 x^{2}+7 x-14 & =0
\end{aligned}
$$

Use the quadratic formula to solve for x :

$$
\begin{aligned}
x & =\frac{-7 \pm \sqrt{49-4(2)(-14)}}{2(2)}=\frac{-7 \pm \sqrt{161}}{4} \\
& =\frac{-7 \pm 12.689}{4}=-4.92,142 \\
x & =1.42 \text { (Since logs are not defined on negatives.) }
\end{aligned}
$$

$$
\begin{aligned}
& \log _{b}(u \times v) \\
&= \log _{b} u+\log _{b} v \\
& \log _{b}(u \div v) \\
&= \log _{b} u-\log _{b} v \\
&=n \log _{b} u^{n}
\end{aligned}
$$

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Exponential function

Logarithmic form
Logarithmic function

Laws of exponents

Properties of logarithms

Changing base of logarithms

$$
\begin{aligned}
& y=b^{x} \\
& x=\log _{b} y \\
& y=\log _{b} x \\
& b^{u} b^{v}=b^{u+v} \\
& \frac{b^{u}}{b^{v}}=b^{u-v} \\
& \left(b^{u}\right)^{n}=b^{n u} \\
& \log _{b} x y=\log _{b} x+\log _{b} y \\
& \log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y \\
& \log _{b}\left(x^{n}\right)=n \log _{b} x \\
& \log _{b} 1=0 \\
& \log _{b}\left(b^{n}\right)=n \\
& \log _{b} b=1 \\
& \ln x=\frac{\log }{a} \text { x } \\
& \log a \\
& \log x \\
& \log x=\frac{\ln x}{\ln 10}
\end{aligned}
$$

Worked examples

EXAMPLE 1 Exponential functions

From the definition, $y=3^{x}$ is an exponential function, but $y=(-3)^{x}$ is not because the base is negative. However, $y=-3^{x}$ is an exponential function, because it is -1 times 3^{x}, and any real-number multiple of an exponential function is also an exponential function.

Also, $y=(\sqrt{3})^{x}$ is an exponential function since it can be written as $y=3^{x / 2}$.
As long as x is a real number, so is $x / 2$. Therefore, the exponent of 3 is real.
The function $y=3^{-x}$ is an exponential function. If x is real, so is $-x$.
Other exponential functions are: $y=-2\left(8^{-0.55 x}\right)$ and $y=35(1.0001)^{x}$.

EXAMPLE 2 Evaluating an exponential function

Evaluate the function $y=-2\left(4^{x}\right)$ for the given values of x.
(a) If $x=2, y=-2\left(4^{2}\right)=-2(16)=-32$.
(b) If $x=-2, y=-2\left(4^{-2}\right)=-2 / 16=-1 / 8$.
(c) If $x=3 / 2, y=-2\left(4^{3 / 2}\right)=-2(8)=-16$.
(d) If $x=\sqrt{2}, y=-2\left(4^{\sqrt{2}}\right)=-14.206$ (calculator evaluation-see Fig. 1).
(e) If $x=\pi, y=-2\left(4^{\pi}\right)=-155.76$ (See Fig. 1).

EXAMPLE 3 Graphing an exponential function

Plot the graph of $y=2^{x}$.
For this function, we have the values in the following table:

(a)

The curve is shown in Fig. 2(a). Previously, we used only integral exponents, and the enlarged points are for these values. We previously introduced rational exponents, and using them would fill in many points between those for integers, but all the points for irrational numbers would be missing and the curve would be dotted (see Fig. 2(b)). Using all real numbers, including the irrational numbers, for exponents we have all points on the curve shown in Fig. 2(a).
We see that the x-axis is an asymptote of the curve. An asymptote is a line that the curve gets closer and closer to as values of x increase (or decrease) without bound, although the curve never actually touches the asymptote.

EXAMPLE 1 Exponential form and logarithmic form

The equation $y=2^{x}$ is written as $x=\log _{2} y$ when written in logarithmic form. When we choose values of y to find corresponding values of x from this equation, we ask ourselves " 2 raised to what power x gives y ?"

This means that if $y=8$, we ask "what power of 2 gives us 8 ?" Then knowing that $2^{3}=8$, we know that $x=3$. Therefore, $3=\log _{2} 8$.

EXAMPLE 3 Changing between forms

(a) $(64)^{1 / 3}=4$ in logarithmic form is $\frac{1}{3}=\log _{64} 4$.
(b) $(32)^{3 / 5}=8$ in logarithmic form is $\frac{3}{5}=\log _{32} 8$.
(c) $\log _{2} 32=5$ in exponential form is $32=2^{5}$.
(d) $\log _{6}\left(\frac{1}{36}\right)=-2$ in exponential form is $\frac{1}{36}=6^{-2}$.
(e) To change $4 \log _{16} 8=3$ to exponential form, first write it as $\log _{16} 8=3 / 4$. Then we can write the exponential form $8=16^{3 / 4}$.

EXAMPLE 4 Evaluating by changing form

(a) Find b, given that $-4=\log _{b}\left(\frac{1}{81}\right)$.

Writing this in exponential form, we have $\frac{1}{81}=b^{-4}$. Thus, $\frac{1}{81}=\frac{1}{b^{4}}$ or $\frac{1}{3^{4}}=\frac{1}{b^{4}}$. Therefore, $b=3$.
(b) Given $\log _{4} y=1 / 2$, in exponential form it becomes $y=4^{1 / 2}$, or $y=2$.

EXAMPLE 6 Logarithmic function

For the logarithmic function $y=\log _{2} x$, we have the standard independent variable x and the standard dependent variable y.

If $x=16, y=\log _{2} 16$, which means that $y=4$, because $2^{4}=16$.
If $x=\frac{1}{16}, y=\log _{2}\left(\frac{1}{16}\right)$, which means that $y=-4$, because $2^{-4}=\frac{1}{16}$.

EXAMPLE 7 Graphing logarithmic function

Plot the graph of $y=\log _{2} x$.
We can find the points for this graph more easily if we first put the equation in exponential form: $x=2^{y}$. By assuming values for y, we can find the corresponding values for x.

Using these values, we construct the graph seen in Fig. 8.

Fig. 10

EXAMPLE 9 Inverse functions

The functions $y=2^{x}$ and $y=\log _{2} x$ are inverse functions. We show this by solving $y=2^{x}$ for x and then interchanging x and y.

Writing $y=2^{x}$ in logarithmic form gives us $x=\log _{2} y$. Then interchanging x and y, we have $y=\log _{2} x$, which is the inverse function.

Making a table of values for each function, we have

$y=2^{x}: \quad$| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | 1 | 2 | 4 | 8 |

$y=\log _{2} x:$

x	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8
y	-3	-2	-1	0	1	2	3

We see that the coordinates are interchanged. In Fig. 10, note that the graphs of these two functions reflect each other across the line $y=x$.

EXAMPLE 1 Sum of logarithms for product

We know that $8 \times 16=128$. Writing these numbers as powers of 2 , we have

$$
8=2^{3} \quad 16=2^{4} \quad 128=2^{7}=2^{3+4}
$$

The logarithmic forms can be written as

$$
3=\log _{2} 8 \quad 4=\log _{2} 16 \quad 3+4=\log _{2} 128
$$

This means that

$$
\log _{2} 8+\log _{2} 16=\log _{2} 128
$$

where

$$
8 \times 16=128
$$

The sum of the logarithms of 8 and 16 equals the logarithm of 128 , where the product of 8 and 16 equals 128 .

EXAMPLE 2 Logarithms of product, quotient, power

(a) Using Eq. (7), we may express $\log _{4} 15$ as a sum of logarithms:

$$
\log _{4} 15=\log _{4}(3 \times 5)=\log _{4} 3+\log _{4} 5 \quad l \begin{aligned}
& \text { logarithm of product } \\
& \text { sum of logarithms }
\end{aligned}
$$

(b) Using Eq. (8), we may express $\log _{4}\left(\frac{5}{3}\right)$ as the difference of logarithms:

$$
\log _{4}\left(\frac{5}{3}\right)=\log _{4} 5-\log _{4} 3 \quad \begin{aligned}
& \text { logarithm of quotient } \\
& \text { difference of logarithms }
\end{aligned}
$$

(c) Using Eq. (9), we may express $\log _{4}\left(t^{2}\right)$ as twice $\log _{4} t$:

$$
\log _{4}\left(t^{2}\right)=2 \log _{4} t \quad \begin{aligned}
& \text { logarithm of power } \\
& \text { multiple of logarithm }
\end{aligned}
$$

(d) Using Eq. (8) and then Eq. (7), we have

$$
\begin{aligned}
\log _{4}\left(\frac{x y}{z}\right) & =\log _{4}(x y)-\log _{4} z \\
& =\log _{4} x+\log _{4} y-\log _{4} z
\end{aligned}
$$

EXAMPLE 3 Sum of logarithms as single quantity

We may also express a sum or difference of logarithms as the logarithm of a single quantity.
(a) $\log _{4} 3+\log _{4} x=\log _{4}(3 \times x)=\log _{4} 3 x \quad$ using Eq. (7)
(b) $\log _{4} 3-\log _{4} x=\log _{4}\left(\frac{3}{x}\right) \quad$ using Eq. (8)
(c) $\log _{4} 3+2 \log _{4} x=\log _{4} 3+\log _{4}\left(x^{2}\right)=\log _{4} 3 x^{2} \quad$ using Eqs. (7) and (9)
(d) $\log _{4} 3+2 \log _{4} x-\log _{4} y=\log _{4}\left(\frac{3 x^{2}}{y}\right) \quad$ using Eqs. (7), (8), and (9)

EXAMPLE 5 Using the properties of logarithms

(a) $\log _{2} 6=\log _{2}(2 \times 3)=\log _{2} 2+\log _{2} 3=1+\log _{2} 3$
(b) $\log _{5} \frac{1}{5}=\log _{5} 1-\log _{5} 5=0-1=-1$
(c) $\log _{7} \sqrt{7}=\log _{7}\left(7^{1 / 2}\right)=\frac{1}{2} \log _{7} 7=\frac{1}{2}$

EXAMPLE 7 Solving equation with logarithms

Use the basic properties of logarithms to solve the following equation for y in terms of $x: \log _{b} y=2 \log _{b} x+\log _{b} a$.

Using Eq. (9) and then Eq. (7), we have

$$
\log _{b} y=\log _{b}\left(x^{2}\right)+\log _{b} a=\log _{b}\left(a x^{2}\right)
$$

Because we have the logarithm to the base b of different expressions on each side of the resulting equation, the expressions must be equal. Therefore,

$$
y=a x^{2}
$$

EXAMPLE 1 Base 10 logarithms on calculator

Using a calculator to find $\log 426$, as shown in the first two lines of the display in Fig. 11, we find that

$$
\begin{aligned}
& \log 426=2.629 \\
& \uparrow \quad \text { no base shown means base is } 10
\end{aligned}
$$

when the result is rounded off. The decimal part of a logarithm is normally expressed to the same accuracy as that of the number of which it is the logarithm, although showing one additional digit in the logarithm is generally acceptable.

Because $10^{2}=100$ and $10^{3}=1000$, and in this case

$$
10^{2.629}=426
$$

we see that the 2.629 power of 10 gives a number between 100 and 1000 .

EXAMPLE 2 Negative base 10 logarithm

Finding $\log 0.03654$, as shown in the third and fourth lines of the calculator display in Fig. 11, we see that

$$
\log 0.03654=-1.4372
$$

We note that the logarithm here is negative. This should be the case when we recall the meaning of a logarithm. Raising 10 to a negative power gives us a number between 0 and 1 , and here we have

$$
10^{-1.4372}=0.03654
$$

EXAMPLE 3 Antilogarithm-inverse logarithm

Given $\log N=1.1854$, we find N as shown in the first two lines of the calculator display in Fig. 12. Therefore,

$$
N=15.32
$$

where the result has been rounded off. Since $10^{1}=10$ and $10^{2}=100$, we see that $N=10^{1.1854}$ and is a number between 10 and 100 .

EXAMPLE 5 Calculation using logarithms

A certain computer design has 64 different sequences of ten binary digits so that the total number of possible states is $\left(2^{10}\right)^{64}=1024^{64}$. Evaluate 1024^{64} using logarithms. (It is very possible that your calculator cannot do this calculation directly.)

Because $\log x^{n}=n \log x$, we know that $\log 1024^{64}=64 \log 1024$. Although most calculators will not directly evaluate 1024^{64}, we can use one to find the value of $64 \log 1024$. Because 1024^{64} is exact, we will show ten calculator digits until we round off the result. We therefore evaluate 1024^{64} as follows:

$$
\begin{aligned}
\text { Let } N & =1024^{64} & & \\
\log N & =\log 1024^{64}=64 \log 1024 & & \text { using Eq. (9): } \log _{b} x^{n}=n \log _{b} x \\
& =192.6591972 & & \\
N & =10^{192.6591972} & & \text { meaning of logarithm } \\
& =10^{192} \times 10^{0.6591972} & & \text { using Eq. (4): } b^{u} b^{v}=b^{u+v} \\
& =\left(10^{192}\right) \times(4.5624) & & \text { antilogarithm of } 0.6591972 \text { is } 4.5624 \\
& =4.5624 \times 10^{192} & & \text { (rounded off) }
\end{aligned}
$$

By using Eq. (4), $10^{0.6591972}$ represents a number between 1 and $10\left(10^{0}=1\right.$ and $10^{1}=10$), and we can write the result immediately in scientific notation.

Although we used a calculator to find 192.6591972 and 4.5624 as shown in Fig. 13, the calculation was done essentially by logarithms.

EXAMPLE 1 Change of base to find natural log

Change $\log 20$ to a logarithm with base e; that is, find $\ln 20$.
Using Eq. (12) with $a=10, b=e$, and $x=20$, we have

$$
\begin{aligned}
\log _{e} 20 & =\frac{\log _{10} 20}{\log _{10} e} \\
\text { or } \quad \ln 20 & =\frac{\log 20}{\log e}=2.996 \quad \text { see lines } 1 \text { and } 2 \text { of calculator display in Fig. } 14
\end{aligned}
$$

This means that $e^{2.996}=20$.

EXAMPLE 2 Change of base to find log to base 5

Find $\log _{5} 560$.
In Eq. (12), if we let $a=10$ and $b=5$, we have

$$
\log _{5} x=\frac{\log x}{\log 5}
$$

In this example, $x=560$. Therefore, we have

$$
\log _{5} 560=\frac{\log 560}{\log 5}=3.932 \quad \text { see lines } 3 \text { and } 4 \text { of calculator display in Fig. } 14
$$

From the definition of a logarithm, this means that

$$
5^{3.932}=560
$$

EXAMPLE 3 Natural log on calculator

(a) From the first two lines of the calculator display in Fig. 15, we find that

$$
\ln 236.5=5.4659
$$

which means that $e^{5.4659}=236.5$.
(b) Given that $\ln N=-0.8729$, we determine N by finding $e^{-0.8729}$ on the calculator. This gives us (see lines 3 and 4 of the display in Fig. 15)

$$
N=0.4177
$$

Fig. 15

EXAMPLE 2 Solving an exponential equation

Solve the equation $3^{x-2}=5$.
Taking logarithms of each side and equating them, we have

$$
\begin{aligned}
\log 3^{x-2} & =\log 5 \\
(x-2) \log 3 & =\log 5 \quad \text { using Eq. (13.9) } \\
x & =2+\frac{\log 5}{\log 3}=3.465
\end{aligned}
$$

This solution means that

$$
3^{3.465-2}=3^{1.465}=5
$$

which can be checked by a calculator.

$$
\log _{b} u^{n}=n \log _{b}(u)
$$

EXAMPLE 3 Solving an exponential equation

Solve the equation $2\left(4^{x-1}\right)=17^{x}$.
By taking logarithms of each side, we have the following:

$$
\begin{gathered}
\log 2+(x-1) \log 4=x \log 17 \\
x \log 4-x \log 17=\log 4-\log 2 \\
x(\log 4-\log 17)=\log 4-\log 2 \\
x=\frac{\log 4-\log 2}{\log 4-\log 17}=\frac{\log (4 / 2)}{\log 4-\log 17} \quad \\
\text { using Eq. (13.8) } \\
=\frac{\log 2}{\log 4-\log 17}=-0.479
\end{gathered} \begin{gathered}
b^{x}=y \operatorname{then} x=\log _{b} y \\
\log _{b}(u v)=\log _{b}(u)+\log _{b}(v) \\
\log _{b}\left(\frac{u}{v}\right)=\log _{b}(u)-\log _{b}(v) \\
\log _{b} u^{n}=\log _{b}(u)
\end{gathered} \begin{gathered}
\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \\
\log _{e} x=\ln x
\end{gathered}
$$

EXAMPLE 1 Exponential equation-solved two ways

(a) We can solve the exponential equation $2^{x}=8$ by writing it in logarithmic form. This gives

$$
x=\log _{2} 8=3 \quad 2^{3}=8
$$

This method is good if we can directly evaluate the resulting logarithm.
(b) Because 2^{x} and 8 are equal, the logarithms of 2^{x} and 8 are also equal. Therefore, we can also solve $2^{x}=8$ in a more general way by taking logarithms (to any proper base) of both sides and equating these logarithms. This gives us

$$
\begin{array}{rlrlrl}
\log 2^{x} & =\log 8 & \text { or } & \ln 2^{x} & =\ln 8 & \\
x \log 2 & =\log 8 & x \ln 2 & =\ln 8 & \text { using Eq. (9) } \\
x & =\frac{\log 8}{\log 2}=3 & x & =\frac{\ln 8}{\ln 2}=3 & \text { using a calculator }
\end{array}
$$

EXAMPLE 3 Solving an exponential equation

Solve the equation $2\left(4^{x-1}\right)=17^{x}$.
By taking logarithms of each side, we have the following:

$$
\begin{aligned}
\log 2+(x-1) \log 4 & =x \log 17 \\
x \log 4-x \log 17 & =\log 4-\log 2 \\
x(\log 4-\log 17) & =\log 4-\log 2 \\
x=\frac{\log 4-\log 2}{\log 4-\log 17} & =\frac{\log (4 / 2)}{\log 4-\log 17} \quad \text { using Eq. (8) } \\
=\frac{\log 2}{\log 4-\log 17} & =-0.479
\end{aligned}
$$

EXAMPLE 4 Exponential equation-application

At constant temperature, the atmospheric pressure p (in Pa) at an altitude h (in m) is given by $p=p_{0} e^{k h}$, where p_{0} is the pressure where $h=0$ (usually taken as sea level). Given that $p_{0}=101.3 \mathrm{kPa}$ (atmospheric pressure at sea level) and $p=68.9 \mathrm{kPa}$ for $h=3050 \mathrm{~m}$, find the value of k.

Because the equation is defined in terms of e, we can solve it most easily by taking natural logarithms of each side. By doing this, we have the following solution:

$$
\begin{array}{rlrl}
\ln p & =\ln \left(p_{0} e^{k h}\right)=\ln p_{0}+\ln e^{k h} & & \text { using Eq. (7) } \\
& =\ln p_{0}+k h \ln e=\ln p_{0}+k h & & \text { using Eq. (9), ln } e=1 \\
\ln p-\ln p_{0} & =k h & & \\
k & =\frac{\ln p-\ln p_{0}}{h} &
\end{array}
$$

Substituting the given values, we have

$$
k=\frac{\ln \left(68.9 \times 10^{3}\right)-\ln \left(101.3 \times 10^{3}\right)}{3050}=-0.000126 / \mathrm{m}
$$

EXAMPLE 7 Solving logarithmic equation

Solve the logarithmic equation $2 \ln 2+\ln x=\ln 3$.
Using the properties of logarithms, we have the following solution:

$$
\begin{aligned}
2 \ln 2+\ln x & =\ln 3 & & \\
\ln 2^{2}+\ln x-\ln 3 & =0 & & \text { using Eq. (9) } \\
\ln \frac{4 x}{3} & =0 & & \text { using Eqs. (7) and } \\
\frac{4 x}{3} & =e^{0}=1 & & \text { exponential form } \\
4 x & =3, & & x=3 / 4
\end{aligned}
$$

Because $\ln (3 / 4)=\ln 3-\ln 4$, this solution checks in the original equation.
The calculator solution of this equation, using the Solver feature, is displayed in Fig. 18. It can also be solved graphically by finding the zero of the function $y_{1}=2 \ln 2+\ln x-\ln 3$, or the intersection of $y_{1}=2 \ln 2+\ln x$ and $y_{2}=\ln 3$.

EXAMPLE 8 Solving logarithmic equation

Solve the logarithmic equation $2 \log x-1=\log (1-2 x)$.

$$
\begin{array}{rlr}
\log x^{2}-\log (1-2 x) & =1 \\
\log \frac{x^{2}}{1-2 x} & =1 & \tag{8}\\
\frac{x^{2}}{1-2 x} & =10^{1} & \text { using Eq. (8) } \\
x^{2} & =10-20 x & \\
x^{2}+20 x-10 & =0 \\
x=\frac{-20 \pm \sqrt{400+40}}{2} & =-10 \pm \sqrt{110} &
\end{array}
$$

Because logarithms of negative numbers are not defined and $-10-\sqrt{110}$ is negative and cannot be used in the first term of the original equation, we have

$$
x=-10+\sqrt{110}=0.488 \quad \text { use a calculator to check this result }
$$

