TIPLE CHOICE. Ch	oose the one alternat	ive that best compl	etes the statement o	r answers the question.	
1) How many electr	ons are necessary to	produce 1.0 C of	negative charge? (<i>e</i>	= 1.60 × 10 ⁻¹⁹ C)	1)
A) 1.6 × 1019					
B) 6.0 × 1023					
C) 1.6 × 109					
D) 6.3 × 1018					
E) 6.3 × 109					
2) A piece of plastic	has a net charge of	+2.00 μC. How n	nany more protons	than electrons does	2)
this piece of plast	tic have? ($e = 1.60 \times 1$	0 ⁻¹⁹ C)			
A) 2.50 × 1013					
B) 3.01 × 1023					
C) 1.25 × 1019					
D) 1.25 × 1013					
E) 2.50 × 1019					
3) What is the charg	e on 1.0 kg of protor	ns?(e = 1.60 × 10-19	$C_{m_{\rm proton}} = 1.67$	′ × 10-27 kg)	3)
A) 1000 C	, 01	Υ.	proton	0,	,
B) 6.0 × 1026 C	1				
C) 9.6 × 107 C					
D) 6.0×10^{23} C					
E) 1.0 C					
4)			11.00 uC	_	4)
⁴) If a charge genera	ator builds a negativ	e static charge of \cdot	how man	ny electrons are	4)
(A) (a_0 a_1)	luring this process. ($e = 1.60 \times 10^{-19} \text{ C}$	68.8	D) $1.76 \times 10-18$	
A) 6.88 × 1013	D) 11.0	C,	00.0	D) 1.76 × 10 ⁻¹⁶	
5) An asteroid of ma	ass 53,000 kg carryin	g a negative charg	ge of 15 µC is 170 i	^m from a second	5)
asteroid of mass	57,000 kg carrying a	negative charge o	of $19 \mu C$. What is the	he magnitude of the	
net force the aster	roids exert upon eac	h other, assuming	we can treat them	as point particles? ($G =$	
6.67 × 10 ⁻¹¹ N ⋅ m	$1^{2}/\text{kg}^{2}, k = 1/4 \pi \varepsilon_{0} = 1$	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/$	C ²)		
A) 520,000 N	B) 0.0000	82 N C) 0.0069 N	D) 560,000 N	
6) Two electrons are	28.0 mm apart at c	losest approach. V	Vhat is the magnitu	ide of the maximum	6)
electric force that	they exert on each c	other? $(e = 1.60 \times 10^{11})$	$(-19 \text{ C}, k = 1/4\pi\epsilon_0 =$	$9.0\ 10^9\ \mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2$	
A) 1.2×10^{10} N	J B) 1.2 N	C	$2.9 \times 10^{-27} \text{ N}$	D) 2.9×10^{-25} N	
7) The force of attra	ation that $a 40.0 \mu C$	point charge over	ts on a +108 uC noi	nt charge has	7)
magnitudo 4.00 N	L How for apart are	those two charges	$k^{2} (k = 1/4\pi c_{0} = 8.00)$	$\times 109 \text{ N} = m^2/C^2$	/)
	P) 2 10 m	C) 1 12 m	(k - 1/4/(20) - 0.99)	$\times 10^{-10} \text{ N} \cdot \text{III}^{-/\text{C}^{-}}$	
A) 3.12 M	D) 2.10 M	C) 1.13 M	ن 3.67 m	c) 2.49 m	
8) When 1.0-µC poin	nt charge is 15 m fro	m a second point	charge, the force ea	ch one experiences a	8)
force of 1.0 µN.	What is the magnitu	ide of the second	charge? ($k = 1/4\pi\varepsilon_0$	$= 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$	
A) 25 nC	B) 1.0 C	C) 10 nC	D) 25 C	E) 0.025 C	

9) (e	Consider a container of electrons and moved to	of 2.0 g of hydrogen, hem to the other sid	H2 (one mole). Sug le of the earth (Eart	opose you removed h's radius is 6380 k	d all the 9) m, <i>k</i> =	
1	$1/4\pi\varepsilon_0 = 9.0 \times 10^9 \mathrm{N} \cdot \mathrm{m}$	m^2/C^2 , NA = 6.022 ×	10^{23} molecules/molec	$pl, e = 1.60 \times 10^{-19}$ (C)	
((c	a) How much charge b) What electric force lescribed?	is left behind after y do the protons exer	ou remove the elec t on the electrons a	trons? fter they are separa	ated as	
MULTIPL 10) T	E CHOICE. Choose Two 10¢ coins (dimes) coins experiences an e	t he one alternative th carrying identical c lectrostatic force of a	hat best completes th Tharges are lying 2.5 magnitude 2.0 N du	be statement or answ 5 m apart on a table 1e to the other coin	vers the question. e. If each of these , how large is the	10)
C	harge on each coin?	$(k = 1/4\pi\varepsilon_0 = 9.0 \times 1$	$0^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2)$			
	Α) 26 μC	Β) 5.2 μC	C) 2.6 µC	D) 52 μC	Ε) 6.7 μC	
11) T a t	Two point charges eac are moved to a new se hem?	ch experience a 1-N or paration of 8 cm, with	electrostatic force w hat is the magnitud	when they are 2 cm e of the electric for	apart. If they ree on each of	11)
	A) 2 N	B) 1/8 N	C) 1/2 N	D) 1/4 N	E) 1/16 N	
12) A (A proton is located at $x = 0.0$ nm, $y = 1.0$ nm other. $(k = 1/4\pi\epsilon_0 = 9)$	the point (x = 4.0 nm). Find the magnitu .0 × 10 ⁹ N · m ² /C ² , e	n, y = 0.0 nm) and a ide of the electrosta e = 1.6 × 10 ⁻¹⁹ C)	n electron is locate tic force that each o	d at the point one exerts on the	12)
	A) 5.3×10^8 N	B) 5.9 × 10-15	N C) 1.4 ×	10-11 N C) 5.3 × 10 ⁻¹⁸ N	
13) T t r	The zirconium nucleu he electric force on th n^2/C^2	s contains 40 proton e electron due to the	s, and an electron i e nucleus? ($e = 1.60$	s 1.0 nm from the r × 10 ⁻¹⁹ C, $k = 1/4\pi$	nucleus. What is $\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot$	13)
	A) 1000 C	D) 2.9 min	C) 9.2 min	D) 6.8 min	E) 3.7 mN	
14) ד f 1	Two tiny particles can force on one of them is $1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N}$	rying like charges of $\frac{4.0 \text{ N}}{100}$, what is the m^2/C^2	the same magnitude of the c	de are ^{8.0 mm} apa harge on each of th	rt. If the electric lese particles?(<i>k</i> =	14)
-	A) 2	B) -4	C)	-1 D)) -7	
	5.6 × 10 C	1.7 × 10 C	2 1.7 ×	10 C	1.7 × 10 C	
SHORT AN 15) H e	NSWER. Write the we have far apart should equal to its weight on 1.67×10^{-27}	ord or phrase that be two protons be if th the earth? ($k = 1/4\pi s$	est completes each s e electrical force of $x_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2$	tatement or answer repulsion on each 2/C ² , <i>e</i> = 1.6 × 10 ⁻¹⁹	s the question. one is 15) <u> </u> C,	
Y.	$n \text{proton} = 1.67 \times 10^{-27}$	kg)				
MULTIPL 16) S f (E CHOICE. Choose Suppose you wanted is ixed proton some dis $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9$	the one alternative the constant of the one alternative the constant of the c	Part best completes th on against the force w far above the elect 10^{-19} C, <i>m</i> proton =	the statement or answer of gravity by the a stron would the product of 1.67×10^{-27} kg, $m_{\rm e}$	wers the question. ttraction of a oton have to be? lectron = 9.11 ×	16)
1	A) 3.7 m	B) 1.5 m	C) 5.1 m	D) 2.3 m	E) 4.6 m	
17) 1	Two equally charged	tiny spheres of mass	1.0 g are placed 2.0) cm apart. When r	eleased, they	17)
ρ ε	pegin to accelerate aw each sphere, assuming	ay from each other a gonly that the electr	at 426 m/s ² . What is force is present?	s the magnitude of $(k = 1/4\pi\varepsilon_0 = 9.0 \times$	f the charge on $10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)	, –

	A) 97 nC	B) 140 nC	C) 12	0 nC	D) 76 nC	
	 Two tiny particles h +5.00-μC particle is must a third charged due to the other two 	aving charges of +6 at $x = 0.00$ cm, and t d particle be placed particles?	.00 μC and +8.00 μ0 he other particle is so that it does not	C are placed along th at <i>x</i> = 100.00 cm. Wh experience any net e	ne <i>x</i> -axis. The here on the <i>x</i> -axis lectrostatic force	18)
	A) 4.64 cm	B) 46.4 cm	C) 91.2 cm	D) 50 cm	E) 9.12 cm	
	19) Two tiny particles h +7.00-μC particle is charged particle be due to the other two A) -2.99 m	aving charges of +7 at y = 0.00 cm, and t placed along the y-a particles? B) 0.187 m	.00 μC and -9.00 μC the other particle is axis so that it does r C) 2.99 m	C are placed along th at $y = 40.00$ cm. When not experience any ne D) 0.200 m	e <i>y</i> -axis. The ere must a third et electric force E) -0.187 m	19)
	20) A particle of charge x = 2a. Where on th it is zero?	+2 q is placed at the ne x-axis can a third	origin and particle positive charge be	of charge <i>-q</i> is place placed so that the ne	d on the <i>x</i> -axis at electric force on	20)
	A) 1.0a	B) 8.6a	C) 3.4a	D) 9.3a	E) 6.8a	
	21) Two tiny beads, eac apart and released in the magnitude of the	h of mass 3.2 g, carr n outer space, they e charge on each be	ty equal-magnitude begin to accelerate ad? ($k = 1/4\pi\epsilon_0 = 9$	e charges. When they toward each other at 9.0 × 10 ⁹ N · m ² /C ²)	y are placed 6.4 cm t 538 m/s ² . What is	21)
	A) 44 nC	B) 1800 nC	C) 1300 nC	D) 510 nC	E) 890 nC	
	22) Three point charges 1.00 m, Q_2 = +3.00 µ the electric force on	are located on the z C is at x = 0.00, and Q2? ($k = 1/4\pi\varepsilon_0 = 3$	x-axis at the followi Q3 = -5.00 μ C is at 8.99 × 10 ⁹ N · m ² /C	ng positions: $Q_1 = +2$ x = -1.00 m. What is 2)	2.00 μC is at <i>x</i> = the magnitude of	22)
	A) 0.135 N	B) 0.0810 N	C) 0.189 N	D) 0.0540 N	E) 0.158 N	
SHOR	T ANSWER. Write the 23) Three point charges origin, a charge of -2 are the magnitude a to the other two cha	word or phrase that are placed on the <i>x</i> 2.0 μ C is at <i>x</i> = 50 cm nd direction of the rges? (<i>k</i> = 1/4 $\pi\epsilon_0$ = 9	t best completes eac -axis, as follows. A n, and a charge of + electrostatic force o $9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$	h statement or answe A charge of +2.0 μ C i 4.0 μ C is at <i>x</i> = 100 c n the charge at the o	rs the question. s at the 23) m. What rigin due	
	24) A point charge Q_1 = (0.00 m, 0.10 m), and magnitude and dire charges? ($k = 1/4\pi s$	+6.0 nC is at the pc d a charge $Q_3 = +5.0$ ction of the net forc $c_0 = 9.0 \times 10^9$ N \cdot m ²	oint (0.30 m, 0.00 m) nC is at (0.00 m, 0. e on the +5.0-nC ch 2/C ²)	; a charge Q2 = -1.0 1 00 m). What are the arge due to the othe	nC is at 24) e r two	
MULT	IPLE CHOICE. Choos 25) The three point char cm, $x = 40$ cm, and x the -13 μ C charge du A) 0.55 N	e the one alternative ges +6.0 μC, -7.0 μC = 120 cm, respectiv ue to the other two B) 0.64 N	e that best completes C, and -13 μ C are pl rely. What is the x c charges? ($k = 1/4\pi\epsilon_0$ C) -0.55 N	s the statement or ans laced on the <i>x</i> -axis at omponent of the elec $y = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{O}$ D) 0.79 N	wers the question. t the points $x = 0$ ctrostatic force on C ²) E) -0.79 N	25)
	26) One point charge + <u>6</u> the upper-left corne acts on the positive) is placed at the cer r of the square. It i charge at the center	nter of a square, and is observed that an . Now a third cha	d a second point cha electrostatic force of rge - <i>Q</i> is placed at th	rge - <i>Q</i> is placed at magnitude 2.0 N e lower-left	the rge centnow? er

corner of the square, as shown in the figure. What is the magnitude of the net force that acts on

cha

	A) 0.0 N	B) 4.0 N	C) 2.8 N	D) 5.3 N
--	----------	----------	----------	----------

27) Three identical 3.0- μ C charges are placed at the vertices of an equilateral triangle that measures 27) . 30 cm on a side. What is the magnitude of the electrostatic force on any one of the charges? (k = $1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

- A) 1.8 N B) 1.6 N C) 2.2 N D) 2.0 N E) 2.4 N
- 28) As shown in the figure, three charges are at the vertices of an equilateral triangle. The charge Q is 5.2 nC, and all the other quantities are accurate to two significant figures. What is the magnitude of the net electric force on the charge Q due to the other two charges? ($k = 1/4\pi\epsilon_0 =$

29) As shown in the figure, three charges are at corners of a rectangle. The charge in the bottom right 29) $_{-}$ corner is Q = -90 nC, and all the other quantities are accurate to two significant figures. What is the magnitude of the net electrical force on Q due to the other two charges? ($k = 1/4\pi\epsilon_0 = 9.0 \times$

$10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$)			
15 nC	-5 nC		
+3 cm			
	1 cm		
i	, rem		
·			
	Q		
A) -2	B) -2	C) -2	D) -2
3.8 × 10 N	7.1 × 10 N	2.8 × 10 N	5.3 × 10 N

30) As shown in the figure, three small charges are equally spaced on the arc of a circle that is centered at the charge Q, where Q = +4 nC and all the other quantities are accurate to two significant figures. What is the magnitude of the net electric force on the charge Q due to the other three charges? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

28)

31) As shown in the figure, the charge Q is midway between two other charges. If Q = -8.2 nC, what 31) _____ must be the charge q1 so that charge q2 remains stationary as Q and q1 are held in place?

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

32) A point charge $Q = -12 \mu$ C, and two other charges q_2 and q_2 , are placed on *x*-*y* axes as

shown in the figure. The electric force components on charge *Q* are F_{χ} = +0.005 N and Fy

= -0.003 N. $(k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2, e = 1.6 \times 10^{-19} \text{ C})$

- (a) How many excess electrons are there in charge *Q*?
- (b) What are the charges q1 and q2, including their signs?

³³⁾ As shown in the figure, charge $q_1 = 2.2 \times 10^{-6}$ C is placed at the origin and charge $q_2 = -4.80 \times 10^{-6}$ C is placed on the *x*-axis, at x = -0.200 m. Where along the *x*-axis can a third charge $Q = -8.30 \times 10^{-6}$ C be placed so that the resultant force on Q is zero?

34) Two point charges $q = -8.50 \ \mu\text{C}$ are fixed 10.0 cm apart along a horizontal bar, as shown in the figure. Their electrical forces will be used to balance the weight of a very small sphere carrying a charge $Q = +15.0 \ \mu\text{C}$, 10.0 cm from each of them in a place where $g = 9.80 \ \text{m/s2}$. What is the greatest mass M this sphere can have without falling? ($k = 1/4\pi\epsilon_0$)

$$= 8.99 \times 109 \text{ N} \cdot \text{m}^{2}/\text{C}^{2})$$

$$q = -8.50\mu\text{C} \quad 10.0 \text{ cm} \quad q = -8.50\mu\text{C}$$

$$10.0 \text{ cm} \quad 10.0 \text{ cm}$$

$$O = +15.0\mu\text{C}$$

$$M = ?$$

35) There is a +5.0- μ C charge at three corners of a square having sides 70 mm long. What are of square having sides and direction of the net electrostatic force on +6.0 μ C placed at the center the

of square? (*k* = the

32) ___

33)

34) _

 $1/4\pi\epsilon_0 = 35$) 9.0 × 10⁹ N · m²/C²)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

36) The figure shows two tiny 5.0-g spheres suspended from very light 1.0-m-long threads. The spheres repel each other after each one is given the same positive charge and hang at rest when $\theta = 4.1^{\circ}$. What is the charge on each sphere? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

37) If a point charge of -30 μ C experiences an electrostatic upward force of 27 mN at a certain location in the laboratory, what are the magnitude and direction of the electric field at that location?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

38) A small object with a 5.0-μC charge is accelerating horizontally on a friction-free surface at 0.0050 m/s2 due only to an electric field. If the object has a mass of 2.0 g, what is the magnitude of the electric field?

A) 0.0040 N/C B) 1.0 N/C C) 0.0020 N/C D) 4.0 N/C E) 2.0 N/C

- 39) A small 0.050-kg insulating sphere carries a charge of -60 μ C and is hanging by a vertical silk thread from a fixed point in the ceiling. An external uniform vertical electric field is now applied. If the applied electric field has a magnitude of 3000 N/C and is directed downward, what is the tension in the silk thread? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$) A) 0.52 N B) 0.41 N C) 0.19 N D) 0.31 N E) 0.71 N
- 40) A pair of charged conducting plates produces a uniform field of 12,000 N/C, directed to the right, between the plates. The separation of the plates is 40 mm. An electron is projected from plate A, directly toward plate B, with an initial speed of $v_0 = 2.0 \times 10^7$ m/s. What is the speed of the electron as it strikes plate B? ($e = 1.6 \times 10^{-19}$ C, $m_{electron} = 9.11 \times 10^{-31}$ kg)

36) ____

37) _

38) _

39) _

A) 2.4×107 m/s B) 1.2 × 107 m/s C) $1.8 \times 107 \text{ m/s}$ D) 2.1 × 107 m/s E) 1.5 × 107 m/s

⁴¹⁾ An electron is projected with an initial velocity $v_0 = 6.9 \times 10^7$ m/s along the y-axis, which is the 41) ____ centerline between a pair of charged plates, as shown in the figure. The plates are 1.0 m long and are separated by 0.10 m. A uniform electric field of magnitude E in the +x-direction is present between the plates. If the magnitude of the acceleration of the electron is measured to be $6.7 \times 10^{15} \text{ m/s}^2$, what is the magnitude of the electric field between the plates? ($e = 1.6 \times 10^{-19} \text{ C}$, $m_{\text{electron}} = 9.11 \times 10^{-31} \text{ kg}$

42) What is the mag	nitude of a the vertical electric f	ield that will balance the	weight of a plastic	42)
sphere of mass ⁸	¹¹ g that has been charged to -3	3.0 nC? $(k = 1/4\pi\varepsilon_0 = 9.0)$	$\times 10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$)	
A) 6	B) 6	C) 6	D) 7	
3.0 × 10 N/	C 5.7 × 10 N/C	8.1 × 10 N/C	2.6 × 10 N/C	
	a 1 1 a 41 4			

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 43) _

43) An electron is placed in a uniform electric field of 4.5 × 104 N/C that points to the right.

 $(e = 1.6 \times 10^{-19} \text{ C}, m_{\text{electron}} = 9.11 \times 10^{-31} \text{ kg})$

(a) What are the magnitude and direction of the force on the electron?

(b) If the electron is released from rest, what is its speed after 3.0 ps?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

44) A proton is placed in an electric field of intensity 800 N/C. What are the magnitude and direction of the acceleration of the proton due to this field? ($e = 1.60 \times 10^{-19}$ C, mproton = 1.67×10^{-27} kg)

44) ____

- A) $_{7.66}\times$ $^{10^{10}}$ m/s^2 opposite to the electric field B) $_{76.6 \times 10^{10}}$ m/s² in the direction of the electric field C) $_{76.6 \times 10^{10}}$ m/s² opposite to the electric field D) 7.66×10^9 m/s² opposite to the electric field
- E) $_{7.66} \times 10^{10} \text{ m/s}^2$ in the direction of the electric field
- 45) A particle with a charge of $\pm 4.0 \ \mu$ C has a mass of 5.0 g. What magnitude electric field directed 45) ___ upward will exactly balance the weight of the particle?

A) 8.2 × 104 N/C B) 5.1 × 104 N/C C) 1.2 × 104 N/C D) 4.1 × 104 N/C E) 4.4 × 104 N/C

46) A small styrofoam ball of mass 0.120 g is placed in an electric field of 6000 N/C pointing
 46) _____
 46) _____
 46) _____
 46) _____
 46) _____

A) -18.0 nC B) -196 nC C) -57.2 nC D) -16.0 nC E) -125 nC

47) A small glass bead has been charged to 1.3 nC. What is the strength of the electric field 2.0 cm 47) _____ from the center of the bead? $(k = 1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$

A)	2	B)	4	C)	-7	D)	-5
5.8 >	<10 N/C	2.9 × 1	10 N/C	5.8 × 1	0 N/C	3.8×10^{-10}	0 N/C

48) What is the magnitude of the electric field 2.8 cm from a tiny object that carries an excess charge 48) _____ of -16 nC? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

A) -5100 N/C
B) 5100 N/C
C) 180,000 N/C
D) 1.8 × 10¹⁴ N/C
E) -180,000 N/C

49) Two tiny particles having charges +40.0 μ C and -10.0 μ C are separated by a distance of 20.0 cm. 49) _____ What are the magnitude and direction of electric field midway between these two charges? (*k* = $1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

A) 44.9×10^6 N/C directed towards the negative charge

^{B)} 44.9×10^5 N/C directed towards the positive charge

^{C)} 44.9×10^4 N/C directed towards the negative charge

D) $_{44.9 \times 10^5}$ N/C directed towards the negative charge

^{E)} 44.9×10^6 N/C directed towards the positive charge

50) The electric field at a point 7.2 cm from a small object points toward the object with a strength of 50) _____ 180,000 N/C. What is the object's charge q? ($k = 1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$) A) +110 nC B) +100 nC C) -100 nC D) -110 nC

51) A +5.00-μC point charge is placed at the 0.0 cm mark of a meter stick and a -4.00-μC point charge 51) _____ is placed at the 50.0 cm mark. At what point on a line through the ends of the meter stick is the electric field equal to zero?

A) 1.4 m from the 0 cm mark

B) 4.7 m from the 0 cm mark

C) 2.9 m from the 0 cm mark

D) 3.3 m from the 0 cm mark

E) 2.5 m from the 0 cm mark

52) A +5.0- μ C point charge is placed at the 0 cm mark of a meter stick and a -4.0- μ C charge is placed m²/52) at the 50 cm mark. What is the net electric field at the 30 cm mark? ($k = 1/4\pi\epsilon_0 = 8.99 \times 10^9$ N · C²)

	A) 5.0 × 10 ⁵ N/C	B) 1.4 × 106 N/C	C) 9.0 × 10 ⁵ N/C	D) 4.0 × 105	N/C
SHORT A 53)	NSWER. Write the wor An electric dipole consist figure. Find the magnitu point P, which is 7.00 cm $^{-6.00\mu C}$ 10.0 cm $^{+6.00}\mu$ 7.00 cm $^{-7.00}$ cm	d or phrase that best com its of charges of $\pm 6.00 \ \mu C$ ide and direction of the e in from each charge. (<i>k</i> = μC	pletes each statement or an that are 10.0 cm apart, as electric field this dipole pr $1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}$	nswers the questions shown in the oduces at 2/C2)	on. 53)
54)	A thin spherical copper many excess electrons a (e = 1.60 × 10 ⁻¹⁹ C)	shell of radius 9.5 cm car re on (a) the outer surfac	ries an excess charge of -4 e of the shell, and (b) the i	4.2 nC. How nner surface?	54)
55)	Two parallel square met but opposite charge unit charge is there on each p 2.0×10^6 N/C? ($k = 1/47$	al plates, 8.4 cm on each formly distributed over t plate if the electric field b $t\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}$	side, are 2.5mm apart an heir facing surfaces. How etween the plates has a m 2)	d carry equal much excess agnitude of	55)
56)	Two parallel square met equal but opposite charg excess electrons are on t magnitude of 18,000 N/0	al plates that are 1.5 cm ges uniformly spread out the negative surface if the C? $(k = 1/4\pi\epsilon_0 = 9.0 \times 10^{-1})$	apart and 22 cm on each s over their facing surfaces e electric field between the $9 \text{ N} \cdot \text{m}^2/\text{C}^2$, $e = 1.6 \times 10^{-11}$	ide carry s. How many e plates has a 9 C)	56)
57)	A tiny 0.0250-µg oil droj horizontally closely-spa- facing surfaces. The plat $10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, $e = 1.6 \times 10^{-10}$ (a) How much excess ch (b) Which plate must be	c containing 15 excess elected metal plates that carries are both circular with 0-19 C) arge must be on each plates positive, the upper one	ectrons is suspended betw cy equal but opposite char a radius of 6.50 cm. ($k = 1$ ate to hold the oil drop ste or the lower one?	veen two :ges on their /4πε ₀ = 9.0 × pady?	57)
58)	Two large closely-space and the electric field bet (a) What is the charge po (b) If the plates are now the plates?	d parallel metal plates ar ween them is 7.6 × 106 N er unit area on each plate moved two times farthe	e uniformly and opposite /C. ? r apart, what is the electric	ly charged c field between	58)
MULTIPL 59)	E CHOICE. Choose the A spherical conductor o electrical field at 6.0 mm A) 89 × 106 N/C	e one alternative that best f radius 2.0 mm carries a from the center of the sp	completes the statement o charge of 7.1 nC. What is ohere? ($k = 1/4\pi\epsilon_0 = 9.0 \times 1/4\pi\epsilon_0 = 1/4\pi\epsilon_0 = 1/4\pi\epsilon_0 = 1/4\pi\epsilon_0 = 1/4\pi\epsilon_0$	r answers the que the magnitude c 10 ⁹ N · m ² /C ²)	e stion. of the 59)

- B) 25× 106 N/C
- C) 780 × 106 N/C
- D) 1.8×10^{6} N/C
- E) 0.89×106 N/C

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

60) A nonconducting sphere of mass 18.5 kg and diameter 25.0 cm has 8.10×10^{15} electrons re moved from it.

```
k = 1/4\pi\varepsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2
The
points of
removal
are
spread
uniforml
у
througho
ut the
volume
of this
sphere.
A tiny
neutral
plastic
ball of
mass
0.120 g is
placed
just
outside
the
surface
of the
large
sphere
and is
then
released.
How
many
electrons
must be
removed
from the
plastic
ball so
that its
initial
accelerati
on just
after
being
released
will be
1525
m/s2?
You can
neglect
gravity.
(e = 1.6 ×
10-19 C,
```

60) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

61) A metal sphere of radius 10 cm carries an excess charge of +2.0 μ C. What is the magnitude of the electric field 5.0 cm above the sphere's surface? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

A) 8.0 × 10⁵ N/C B) 8.0 × 10⁷ N/C C) 4.0 × 10⁷ N/C D) 4.0 × 10⁹ N/C E) 4.0 × 10⁵ N/C

62) A metal sphere of radius 2.0 cm carries an excess charge of 3.0 μC. What is the electric field 6.0 62) ____ cm from the center of the sphere? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

- A) 4.2 × 106 N/C B) 5.7 × 106 N/C C) 6.4 × 106 N/C D) 9.3 × 106 N/C
- E) 7.5 × 106 N/C

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

63) A thin spherical metal shell of radius 8.0 cm carries 7.5 μ C of excess charge. What is the magnitude of the electric field it produces at the following places? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9$

 $N \cdot m^2/C^2$)

- (a) at 1.0 cm above the surface
- (b) at 7.0 cm from the center of the sphere

64) In the figure, a conducting sphere of radius $r_1 = 0.050$ m is placed at the center of a spherical conducting shell of inner radius $r_2 = 0.100$ m and outer radius $r_3 = 0.140$ m. The inner sphere carries an excess charge of -4.0 nC. The outer spherical shell carries a net excess charge of 3.0 nC. Calculate the magnitude of the electric field at the following distances r from the center of the spheres. ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9$ N \cdot m²/C²)

(a) r = 0.075 m (in the air space between spheres),

- (b) r = 0.120 m (in the metal of the spherical shell), and
- (c) r = 0.200 m (outside the spherical shell).

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

65) Two point charges of +6.00 μ C and +9.00 μ C are placed inside a cube having sides 0.100 m long.

What is the net electric flux passing through the surface of the cube? $(k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot 10^{-1} \text{ N})$

 m^2/C^2)

A)
$$_{0.450 \times 10^6}$$
 N^{m²/C}
B) $_{4.20 \times 10^6}$ N^{m²/C}

64) _____

65) _____

63) ____

C) $_{3.80 \times 10^6}$ N^{m²}/C D) $_{1.69 \times 10^6}$ N^{m²}/C E) $_{0.340 \times 10^6}$ N^{m²}/C

⁶⁶⁾ A uniform electric field with a magnitude of 7×10^6 N/C i is directed along the +*x*-axis. A cube having edges of length 0.1 m is oriented as shown in the figure. What is the electric flux passing through the shaded face of the cube?

- 67) How much kinetic energy does a proton gain if it is accelerated, with no friction, through a potential difference of 1.00 V? The proton is 1836 times heavier than an electron, and $e = 1.60 \times 10^{-19}$ C.
- 67) ____

- A) 1836 eV B) 1836 J C) 1.60 × 10⁻¹⁹ eV D) 1.00 eV
- E) 1.00 J
- 68) A tiny particle with charge + 5.0 μC is initially moving at 55 m/s. It is then accelerated through a potential difference of 500 V. How much kinetic energy does this particle gain during the period of acceleration?
 A) 100 J
 B) 2500 J
 C) 2.5 × 10⁻³ J
 D) 1.0 × 104 J
- 69) How much work must we do on an electron to move it from point A, which is at a potential of 69 ______ +50V, to point B, which is at a potential of -50 V, along the semicircular path shown in the figure? Assume the system is isolated from outside forces. ($e = 1.60 \times 10^{-19}$ C)

70)	If an electron is accer reach? ($e = 1.60 \times 10^{-10}$	lerated from rest thr 19 C , $m_{electron} = 9$.	ough a potent 11 × 10 ⁻³¹ kg)	ial differen	ce of 5200 V, 1	what speed	does it	70)
	A) 7	B) 7	(C) 7	Ι	D) 7		
	4.3 × 10 m/s	2.8 × 10	m/s	3.6 × 10	m/s	2.1 × 10	m/s	
71)	A proton that is init	ially at rest is acceler	ated through	an electric j	potential diffe	erence of		71)
	magnitude 500 V.	How much kinetic en	nergy does it g	gain? (e = 1.)	60 × 10 ⁻¹⁹ C)			
	A) 8.0 × 10-1 / J	B) 1.6 × 10-1	el (L) 500 J	I	D) 800 J		
72)	A proton that is init. magnitude 500 V.	ially at rest is acceler What speed does the	ated through proton gain?	an electric j (<i>e</i> = 1.60 × 1	ootential diffe 0 ⁻¹⁹ C , mpro	erence of oton = 1.67 ×	10-27	72)
	A) 2.2×10^5 m/s	B) 9.6 × 10 ⁵ 1	m/s C	C) 1.1 × 10 ⁵	m/s I	D) 3.1 × 10 ⁵	m/s	
73)	A proton with a spe	ed of 5.0 x $\frac{10^5}{10^5}$ m/s a	accelerates thr	ough a pote	ential differen	ice and there	eby	73)
	increases its speed to proton accelerate? (6	$0.6.0 \times \frac{10^5}{m/s}$ m/s. T $c = 1.60 \times 10^{-19}$ C, m_1	hrough what : proton = 1.67 >	magnitude < 10-27 kg)	potential diffe	erence did t	ne	
	A) 3200 V	B) 660 V	C) 1900 V	D)	1300 V	E) 570	V	
74)	After a proton with through a potential	an initial speed of 1. difference of 0 100 k	50 × 10 ⁵ m/s h V, what is its f	as increase	d its speed by $e = 1.60 \times 10^{\circ}$	accelerating	s top =	74)
	$1.67 \times 10^{-27} \text{ kg}$, , , , , , , , , , , , , , , , , , ,	inui specu.	(0 1.00 10	<i>c ,</i> pio	1011	
	A) $355 \times 105 m/s$							
	B) 1.55×10^{6} m/s							
	C) $8.80 \times 105 \text{ m/s}$							
	D) $4.56 \times 105 \text{ m/s}$							
	E) 2.04 × 105 m/s							
	2) 2.04 × 10° 11/5							
75)	How much work is	needed to carry an e	lectron from t	he positive -9.11	terminal to th	e negative		75)
	A) 14.4 \times 10-19 I/C	attery. (ℓ = 1.00 × 10	c, melectr	on - 7.11 ^	10 01 kg)			
	R) 14.4×10^{-19} J/C	-						
	$C) 14.4 \times 10^{-19}$ J							
	D) 90 I							
	E) 1.6 × 10-19 J							
76)	If it takes 0.58 J of er magnitude of the po	hergy to move 0.060 (Intential difference be	C of charge f	rom point . A and B?	A to point B, w	what is the		76)
	A) 0.10 V	B) 9.7 V	· (C) 6.3 V	I	D) 0.030 V		
77)	A 4.0-g bead carries difference <i>V</i> , and afference <i>V</i> and afference	a charge of 20 μ C. terward the bead is r	The bead is ac noving at 2.0 i	ccelerated f m/s. What	rom rest throu is the magnit	igh a potent rude of the	ial	77)
	A) 400 kV	B) 400 V	C) 800 V	D)	200 V	E) 800	kV	
78)	If a Cu^{2+} ion that is	initially at rest accel	erates through	n a potentia	l difference of	f 12 V witho	ut	78)
	friction, how much	kinetic energy will it	gain? (<i>e</i> = 1.60) × 10-19 C)				
	A) 3.0 eV.	B) 12 eV.	(C) 6.0 eV.	I	D) 24 eV.		

⁷⁹⁾ A sphere with radius 2.0	mm carries a $+2.0 \mu\text{C}$	charge. What is the potent	ial difference, $V_B - V_A$,	79)
between point B, which is	s ^{5.0 m} from the cente	er of the sphere, and point .	A, which is ^{10.0 m}	
from the center of the sph	here? $(k = 1/4\pi\varepsilon_0 = 9)$.	$0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$		
A) 200 V	B) -1800 V	C) 1800 V	D) -0.54 V	
80) Two 3.0 μ C charges lie or potential (relative to infin	n the <i>x</i> -axis, one at the nity) due to these char	origin and the other at ^{28.} ges at a point at ^{840 m} or	0 m. What is the n the <i>x</i> -axis? ($k = 1/4\pi\varepsilon_0$	80)
$= 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$	B) 960 V	C) 800 V	D) 240 V	
A) 040 V	D) 900 V	C) 800 V	D) 240 v	
81) A 4.9 μ C negative point of the mass of the positively from 3.0 mm to 12.0 mm object moves? ($k = 1/4\pi$	tharge has a positively charged particle is 1 , what is the maximum $r_{c0} = 9.0 \times 10^{9} \text{ N} \cdot \text{m}^{2}/$	y charged particle in an ellip ⁰ µg and its distance from m potential difference throw C ²)	ptical orbit about it. If the point charge varies ugh which the positive	81)
A) 11 MV	B) 3.7 MV	C) 18 MV	D) -4.9 MV	
82) Two very small +3.00-μC	charges are at the end	ds of a meter stick. Find th	ne electric potential	82)
(relative to infinity) at the	e center of the meter s	tick. ($k = 1/4\pi\varepsilon_0 = 8.99 \times 10^{\circ}$	$P N \cdot m^2/C^2$)	
A) 0.00 V	B) $5.40 \times 10^4 \text{ V}$	C) $2.70 \times 10^4 \text{ V}$	D) 1.08×10^5 V	
83) Three point charges, -2.00 the figure. What is the electric $1/4\pi\varepsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2$) μC, +4.00 μC, and +6 ectric potential (relativ 2/C2)	5.00 μC, are located along th re to infinity) at point P due	he <i>x</i> -axis as shown in e to these charges? (<i>k</i> =	83)
0.200 m				

-2.00 μC 0.200 m +4.	+6.0 0.200 m	ο μC		
A) +154 kV	B) +307 k V	C) -307 kV	D) 0.00 kV	E) -154 kV

84) A +4.0-μC and a -4.0-μC point charge are placed as shown in the figure. What is the potential difference between points A and B? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

85) Four 2.0- μ C point are at the corners of a rectangle with sides of length 3.0 cm and 4.0 cm. What is the

```
electric
            85)
potential
(relative
to
infinity)
at the
midpoint
of the
rectangle
? (k =
1/4\pi\varepsilon_0 =
9.0 \times 10^{9}
Ν·
m^{2}/C^{2})
               A) 7.8 MV
                                             B) 3.5 MV
                                                                           C) 1.3 MV
                                                                                                         D) 2.9 MV
```

- 86) A square is 1.0 m on a side. Point charges of +4.0 μ C are placed in two diagonally opposite corners. In the other two corners are placed charges of +3.0 μ C and -3.0 μ C. What is the potential (relative to infinity) at the midpoint of the square? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)
 - A) 1.0 × 106 V B) infinite C) 0 V D) 1.0 × 104 V E) 1.0 × 105 V

87) Two 5.0- μ C point charges are 12 cm apart. What is the electric potential (relative to infinity) of this combination at the point where the electric field due to these charges is zero? ($k = 1/4\pi\epsilon_0 =$

9.0 × 10⁹ N · m²/C²) A) 12.5 MV B) 0.75 MV C) 0.0 MV D) 25 MV E) 1.5 MV

88) A +5.0- μ C point charge is 12 cm from a -5.0- μ C point charge. What is the magnitude of the electric field they produce at the point on the line connecting them where their electric potential (relative to infinity) is zero? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

A) 12.5 MN/C
B) 25 MN/C
C) 0.75 MN/C
D) 0 N/C
E) 1.5 MN/C

89) The three point charges shown in the figure form an equilateral triangle with sides 6.1 cm long. What is the electric potential (relative to infinity) at the point indicated with the dot, which is equidistant from all three charges? Assume that the numbers in the figure are all accurate to two significant figures. ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

86) _

	D) 1500 V	C) I(000 V	D) 0.00 V	
90) Four +6.00-μC po electric potential	oint charges are at the of these charges, relat	corners of a square ive to infinity, at th	2.00 m on each side e center of this squa	e. What is the are? ($k = 1/4\pi\varepsilon_0 =$	90) _
$8.99 \times 10^9 \text{ N} \cdot \text{m}^2$	$/C^{2})$				
A) 153 kV	B) 61.0 kV	C) 76.4 kV	D) 38.2 kV	E) 306 kV	
91) Four point charge	es of magnitude 6.00 µ	ιC and are at the co	rners of a square 2.	00 m on each side.	91) _
Two of the charge	es are positive, and tw	vo are negative. W	hat is the electric p	otential at the	
center of this squ	are, relative to infinity	, due to these char	ges? ($k = 1/4\pi\varepsilon_0 = 8.$	$99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$	
A) 153 kV	B) 0 V	C) 61.0 kV	D) 306 kV	E) 76.4 kV	
,	,	,	,	,	
92) Two +6.0-µC char	rges are placed at two	of the vertices of a	n equilateral triangl	e having sides 2.0	92) _
m long. What is t	he electric potential at	the third vertex, re	elative to infinity, di	ue to these charges?	
$(k = 1/4\pi\epsilon_0 = 9.0 \times$	$(10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$		-	-	
(e					
A) 0 V	B) 90 kV	C) 108 V	D) 27 kV	E) 54 kV	
A) 0 V	B) 90 kV	C) 108 V	D) 27 kV	E) 54 kV	
A) 0 V 93) Two point charge	B) 90 kV es of +2.00 μC and +4.0	C) 108 V 00 μC are at the orig	D) 27 kV gin and at the point	E) 54 kV <i>x</i> = 0.000 m, <i>y</i> =	93) _
A) 0 V 93) Two point charge -0.300 m, as show	B) 90 kV es of +2.00 μC and +4.0 m in the figure. What	C) 108 V 00 μC are at the orig is the electric poter	D) 27 kV gin and at the point tial due to these ch	E) 54 kV x = 0.000 m, $y =arges, relative to$	93) _
 A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po 	B) 90 kV es of +2.00 μC and +4.0 n in the figure. What int P at x = 0.400 m on	C) 108 V 00 μ C are at the origis the electric poter the <i>x</i> -axis? (<i>k</i> = 1/4	D) 27 kV gin and at the point itial due to these ch $\pi\epsilon_0 = 8.99 \times 10^9$ N ·	E) 54 kV x = 0.000 m, $y =arges, relative tom^2/C^2)$	93) _
A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po	B) 90 kV es of +2.00 μ C and +4.0 m in the figure. What int P at x = 0.400 m on	C) 108 V μ C are at the origination of the electric potentiation of the the <i>x</i> -axis? (<i>k</i> = 1/4)	D) 27 kV gin and at the point tial due to these cha $\pi \varepsilon_0 = 8.99 \times 10^9$ N ·	E) 54 kV x = 0.000 m, $y =arges, relative tom^2/C^2)$	93) _
A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po +2.00 µC	B) 90 kV es of +2.00 μ C and +4.0 on in the figure. What int P at x = 0.400 m on 0.400 m P X	C) 108 V 00 μ C are at the origination of the electric potentiate the <i>x</i> -axis? (<i>k</i> = 1/4)	D) 27 kV gin and at the point tial due to these ch $\pi\epsilon_0 = 8.99 \times 10^9$ N ·	E) 54 kV x = 0.000 m, $y =arges, relative tom^2/C^2)$	93) _
 A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po +2.00 μC 	B) 90 kV es of +2.00 μ C and +4.0 on in the figure. What int P at $x = 0.400$ m on 0.400 m P X	C) 108 V 00 μ C are at the origination of the electric poten the <i>x</i> -axis? (<i>k</i> = 1/4)	D) 27 kV gin and at the point tial due to these cha $\pi \varepsilon_0 = 8.99 \times 10^9$ N ·	E) 54 kV x = 0.000 m, $y =arges, relative tom^2/C^2)$	93) _
 A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po +2.00 μC 0.300 m 	B) 90 kV es of +2.00 μ C and +4.0 m in the figure. What int P at <i>x</i> = 0.400 m on 0.400 m P X	C) 108 V 00 μ C are at the origis the electric poter the <i>x</i> -axis? (<i>k</i> = 1/4	D) 27 kV gin and at the point itial due to these cha $\pi \varepsilon_0 = 8.99 \times 10^9 \text{ N} \cdot$	E) 54 kV x = 0.000 m, y = arges, relative to m^2/C^2)	93) _
A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po +2.00 μC 0.300 m	B) 90 kV es of +2.00 μ C and +4.0 on in the figure. What int P at $x = 0.400$ m on 0.400 m P X	C) 108 V 00 μ C are at the origination of the electric poten at the <i>x</i> -axis? (<i>k</i> = 1/4)	D) 27 kV gin and at the point itial due to these cha $\pi \varepsilon_0 = 8.99 \times 10^9 \text{ N} \cdot$	E) 54 kV x = 0.000 m, $y =arges, relative tom^2/C^2)$	93) _
A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po +2.00 μC 0.300 m	B) 90 kV es of +2.00 μ C and +4.0 m in the figure. What int P at <i>x</i> = 0.400 m on 0.400 m P X	C) 108 V 00 μ C are at the orig is the electric poter the <i>x</i> -axis? (<i>k</i> = 1/4	D) 27 kV gin and at the point tial due to these cha $\pi \varepsilon_0 = 8.99 \times 10^9 \text{ N} \cdot$	E) 54 kV x = 0.000 m, y = arges, relative to m^2/C^2)	93) _
 A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po +2.00 μC 0.300 m +4.00 μC 	B) 90 kV es of +2.00 μ C and +4.0 on in the figure. What int P at <i>x</i> = 0.400 m on 0.400 m P X	C) 108 V 00 μ C are at the origis the electric poter the <i>x</i> -axis? (<i>k</i> = 1/4	D) 27 kV gin and at the point itial due to these cha $\pi \varepsilon_0 = 8.99 \times 10^9 \text{ N} \cdot$	E) 54 kV x = 0.000 m, $y =arges, relative tom^2/C^2)$	93) _
 A) 0 V 93) Two point charge -0.300 m, as show infinity, at the po +2.00 μC 0.300 m +4.00 μC A) 117 kV 	B) 90 kV es of +2.00 μ C and +4.0 m in the figure. What int P at <i>x</i> = 0.400 m on 0.400 m P X B) 36.0 kV	C) 108 V μ C are at the origination of the electric potentiation of the <i>x</i> -axis? (<i>k</i> = 1/4 C) 11.7 kV	D) 27 kV gin and at the point tial due to these ch $\pi \epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot$ D) 15.7 kV	E) 54 kV x = 0.000 m, $y =arges, relative tom^2/C^2)E) 56.0 kV$	93) _

94) Three point charges are placed at the following points in a horizontal *x*-*y* plane: +9.0 μC 94) is at (0.00 m, 0.20 m), +4.0 μC is at (0.60 m, 0.00 m), and -9.0 × μC is at (0.60 m, 0.20 m). Calculate the electrical potential (relative to infinity) at the origin due to these three point charges. (*k* = 1/4πε0 = 9.0 × 10⁹ N · m²/C²)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

95) Point charges +4.00 μ C and +2.00 μ C are placed at the opposite corners of a rectangle as shown in the figure. What is the potential at point A, relative to infinity, due to these charges? (*k* = $1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

95) _

96) Point charges +4.00 μ C and +2.00 μ C are placed at the opposite corners of a rectangle as shown in the figure. What is the potential at point B due to these charges? ($k = 1/4\pi\epsilon_0 = 8.99 \times 10^9$ N · m²/C²)

97) Point charges +4.00 μ C and +2.00 μ C are placed at the opposite corners of a rectangle as shown in the figure. What is the potential difference *V*_A - *V*_B? (*k* = 1/4 $\pi\epsilon_0$ = 8.99 × 10⁹ N · m²/C²)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 98) A very small 2.8-g particle carrying a charge of +3.7 μ C is fired with an initial speed of 98) _____ 8.9 m/s directly toward a second small 7.8-g particle carrying a charge of +^{6.9} μ C. The second particle is held fixed throughout this process. If these particles are initially very far apart, what is the closest they get to each other? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 99) _ 99) Two tiny grains of sand having charges of 4.0 μ C and -4.0 μ C are situated along the x-axis at x_1 = 2.0 m and $x_2 = -2.0$ m. What is electric potential energy of these grains relative to infinity? (k = $1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$ C) -72 mJ A) -36 mJ B) 72 mJ D) 0 J E) 36 mJ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 100) ____ 100) Two tiny particles having charges $q_1 = +88.0$ nC and $q_2 = -77.0$ nC are separated by 0.500 m and held in place, as shown in the figure. A third particle, having a charge of 140 nC is placed at the point A, which is 0.18 m to the left of q_2 . How much work is needed to move the third particle from point A to point B, which is 0.40 m to the left of q_1 . All the points in the figure lie on the same line. ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$) В \hat{q}_1

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

¹⁰¹⁾ A 5.0- μ C point charge and a ^{10.0- μ C} point charge are initially extremely far apart. How much work does it take to bring the ^{5.0- μ C} point charge to the point x = 3.0 mm, y = 0.0 mm, and the

10.0-eharge to the pointpoint

96) _

97)

x = -3.0 mm	01)				
y = 0.0 mm	?				-
(<i>k</i> =					
$1/4\pi\epsilon_0 =$					
9.0×10^{9}					
Ν·					
m^{2}/C^{2})					
. ,	A) 50 J	B) 75 J	C) 13 J	D) 150 J	
SHORT AN	SWER. Write th	e word or phrase that best	t completes each statemen	t or answers the question.	•
102) F	A +7.5-IIC point cha	irge is 5.0 cm from a -9.4-	-μC point charge in your	$\frac{1}{2}$	
C	amornia. now m	ich work would you hav	e to do li you left the +7.3	5-nc charge in the	
la	ab but took the -9.4	l-μC charge to New York	$x \text{ City? } (k = 1/4\pi\varepsilon_0 = 9.0 \times 10^{-1})$	$10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2)$	
MULTIPLI	E CHOICE. Choo	se the one alternative that	best completes the staten	nent or answers the question	n.
103) A	An alpha particle (a	helium nucleus, having	charge +2e and mass 6.64	4×10^{-27} kg) moves head-o	on 103)
a	t a fixed gold nucl	eus (having charge +79e)	. If the distance of close	st approach is 2.0 × 10-10 n	n,
V	what was the speed	l of the alpha particle wh	en it was very far away f	rom the gold? $(k = 1/4\pi\varepsilon)$) =

$9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, e =	1.60 × 10 ⁻¹⁹ C)		
A) 4.6 × 106 m/s	B) 4.6 × 10 ⁵ m/s	C) 2.3 × 106 m/s	D) 2.3 × 10 ⁵ m/s

104) How much energy is necessary to place three +2.0- μ C point charges at the vertices of an equilateral triangle of side 2.0 cm if they started out extremely far away? ($k = 1/4\pi\epsilon_0 = 9.0 \times 10^9$ N \cdot m²/C²)

A) 5.4 J B) 7.6 J C) 4.5 J D) 6.7 J

105) An electric dipole with ±9.0 µC point charges is positioned so that the positive charge is 1.0 mm 105) — to the right of the origin and the negative charge is at the origin. How much work does it take to bring a $6.0-\mu$ C point charge from very far away to the point *x* = 3.0 mm, *y* = 0.0 mm? (*k* = 1/4 $\pi\epsilon_0$ = 9.0 × 10⁹ N · m²/C²) A) 68 J B) 410 J C) 81 J D) 180 J

106) A +3.0- μ C point charge is initially extremely far from a positive point charge *Q*. You find that it 106) _____ takes 41 J of work to bring the +3.0- μ C charge to the point *x* = 3.0 mm, *y* = 0.0 mm and the point charge *Q* to the point *x* = -3.0 mm, *y* = 0.00 mm. What is *Q*? (*k* = ...) A) 9.1 μ C B) 4.6 μ C C) 27 pC D) 55 nC

107) A point charge of +9.00 μ C and a second charge *Q* are initially very far apart. If it takes ^{21.0 J} of ¹⁰⁷⁾ work to bring them to a final configuration in which the ^{+9.00- μ C} charge is at the point *x* = 1.00 mm, *y* = 1.00 mm, and the second charge *Q* is at the point *x* = 1.00 mm, *y* = 3.00 mm, find the magnitude of the charge *Q*. (*k* = 1/4 π ε_0 = 8.99 × 10⁹ N · m²/C²) A) 2.59 μ C B) 0.52 μ C C) 1.04 μ C D) 1.04 nC

108) A +5.0-nC charge is at the point (0.00 m, 0.00 m) and a -2.0-nC charge is at (3.0 m, 0.00 m). What 108) _____ work is required to bring a 1.0-nC charge from very far away to point (0.00 m, 4.0 m)? ($k = 1/4\pi\epsilon_0$

nJ

$= 9.0 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$			
A) 15 nJ	B) 7.7 nJ	C) 3.6 nJ	D) 11

109) In the figure, +4.0- μ C and -4.0- μ C point charges are located as shown. Now an additional +2.00- μ C point charge is placed at point A. What is the electric potential energy of this system of three charges, relative to infinity? ($k = 1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)

110) A small 4.0-μC charge and a small 1.5-μC charge are initially very far apart. How much work110) ____does it take to bring them to a final configuration in which the 4.0-μC charge is at the point x = 1.0 mm, y = 1.0 mm, and the 1.5-μC charge is at the point x = 1.0 mm, y = 3.0 mm? ($k = 1/4\pi\epsilon_0 =$

 $8.99 \times 10^9 \, \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2)$

A) 13.5 kJ B) 27 J C) 54 J D) 13.5 J

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 111) Point charges +4.00 μ C and +2.00 μ C are placed at the opposite corners of a rectangle as 111) _____ shown in the figure. If these charges are released and are free to move with no friction, what is the maximum amount of kinetic energy they will gain? ($k = 1/4\pi\epsilon_0 = 8.99 \times 10^9$ N
 - $\cdot m^2/C^2$)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

112) The figure shows a group of three particles, all of which have charge Q = 8.8 nC. How much work did it take to assemble this group of charges if they all started out extremely far from each

112) _____

 109) _

113) The figure shows an arrangement of two particles each having charge Q = -3.9 nC and each 113) _ separated by 5.0 mm from a proton. If the two particles are held fixed at their locations and the proton is set into motion as shown, what is the minimum speed the proton needs to totally escape from these particles? ($m_{\text{proton}} = 1.67 \times 10^{-27} \text{ kg}, e = 1.60 \times 10^{-19} \text{ C}, k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N}$ $\cdot m^2/C^2$ 5.0 mm 5.0 mm D) A) B) 6 C) 6 6 1.6 × 10 m/s 3.3 × 10 m/s 1.3 × 10 m/s 6.3 × 10 m/s 114) An electron is released from rest at a distance of 9.00 cm from a fixed proton. How fast will the 114) _____ electron be moving when it is 3.00 cm from the proton? ($k = 1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, e = 1.60×10^{-19} C, melectron = 9.11×10^{-31} kg, mproton = 1.67×10^{-27} kg) A) 4.64×105 m/s B) 130 m/s C) 1.06×10^3 m/s D) 106 m/s E) 75.0 m/s SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 115) The potential difference between two square parallel plates is 4.00 V. If the plate 115) ____ separation is 6.00 cm and they each measure 1.5 m by 1.5 m, what is the magnitude of the electric field between the plates? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 116) In a region where the electric field is uniform and points in the +x direction, the electric potential 116) _____ is -2000 V at x = 8 m and is +400 V at x = 2 m. What is the magnitude of the electric field? A) 600 V/m B) 400 V/m C) 200 V/m D) 300 V/m E) 500 V/m 117) Two isolated copper plates, each of area 0.40 m², carry opposite charges of magnitude $7.08 \times$ 117) _____ 10^{-10} C. They are placed opposite each other in parallel alignment, with a spacing of 4.0 cm between them. What is the potential difference between the plates? ($\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$) B) 8.0 V C) 7.6 V D) 3.0 V E) 0.40 V A) 3.2 V 118) A space probe approaches a planet, taking measurements as it goes. If it detects a potential 118) _____ difference of 6000 MV between the altitudes of 253,000 km and 276,000 km above the planet's surface, what is the approximate electric field strength produced by the planet at 264,500 km above the surface? Assume the electric field strength is approximately constant at these altitudes. B) 0.261 N/C C) 493 µN/C A) 261 N/C D) 561 N/C SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 119) A spherical oil droplet with nine excess electrons is held stationary in an electric field oil is_m3. What is between two large horizontal plates that are 2.25 cm apart. The field is produced by 824 the radius of maintaining a potential difference of 0.3375 kV across the plates, and the density of the kg/ the oil drop? (e

= 1.60 × 10 ⁻¹⁹ C)	119)					- - -
MULTIP 120)	LE CHOICE. Choo A battery maintain plates separated by A) 1.2 V/m	ose the one alternative s the electrical poten 7 10 cm. What is the B) 120 V/m	that best completes tial difference of 12 strength of the ele C) ze	s the statement or -V between two ctric field betwee ro	answers the question large parallel metal en the plates? D) 12 V/m	. 120)
121)	A uniform electric potential at <i>x</i> = 5.0 A) 4.0 kV	field, with a magnitu m is 2500 V, what is t B) 0.50 kV	de of 500 V/m, is p the potential at <i>x</i> = 1 C) 1.0 kV	oints in the + <i>x</i> di 2.0 m? D) 5.0 kV	rection. If the E) 2.0 kV	121)
122)) Consider a uniforn potential measured that point?	n horizontal electric f l at a given point is 8	ield of 50 N/C direc 0 V, what is the pot	cted toward the e tential at a point	east. If the electric 1.0 m directly west of	122) f
	A) 30 V	B) 80 V	C) 13	0 V	D) 50 V	
123)) Consider a uniforn potential at a giver the point?	n horizontal electric f point in the field is 8	ield of 50 N/C direc 80 V, what is the po	cted toward the e otential at a point	east. If the electric : 1.0 m directly east o	123) f
	A) 90 V	B) 130 V	C) 30	V	D) 15 V	
124)) Consider a uniform potential at a giver of that point?	n horizontal electric f n point in the field is 8	ield of 50 N/C direc 80 V, what is the po	cted toward the e otential at a point	east. If the electric : 1.0 m directly south	124)
	A) 30 V	B) 50 V	C) 0 V	\checkmark	D) 80 V	
125)) A proton moves 0. the change in kinet	10 m along the direct ic energy of the prote	ion of an electric fig on? ($e = 1.60 \times 10^{-19}$	eld of magnitude ⁹ C)	3.0 V/m. What is	125)
	A) 1.6 × 10-20 J	B) 4.8 × 10 ⁻²	20 J C) 8.0) × 10-21 J	D) 3.2 × 10-20 J	
126)) Two very large par potential. An elec the electron arrives	callel metal plates, sep stron is released from at a distance 0.050 n	parated by 0.20 m, rest at a location 0 n from the positive	are connected act .10 m from the ne plate, how much	ross a 12-V source of egative plate. When 1 kinetic energy has	126)
	A) 9.6 × 10-19 J	B) 2.4 × 10 ⁻¹	9 J C) 7.2	2 × 10-19 J	D) 4.8 × 10-19 J	
SHORT A	ANSWER. Write th) The equipotential s of potential marked (a) What is the pote (b) What is the pote	e word or phrase that surfaces for two poin d on the line for each ential difference, <i>V</i> G ential difference, <i>V</i> A	t best completes eac t charges are shown surface. - <i>V</i> D, between poir - <i>V</i> G, between poir	h statement or an n in the figure, w nts G and D? nts A and G?	swers the question. ith the value	127) +160V +100V +40V

128)	_
------	---

128) The equipotential surfaces for two spherical conductors are shown in the figure, with the value of potential marked on the line for each surface.

(a) If the distance between points A and B is 2.5 cm what is the approximate intensity of the electric field between these two points?

(b) If the distance between points C and D is 2.5 cm what is the approximate intensity of the electric field between these two points?

129) When the magnit					
	ude of the charge on	each plate of an air	-filled capacitor is 4 µ	C, the potential	129) _
difference betwee	en the plates is 80 V. V	What is the capacita	nce of this capacitor?		
A) 0.1 μF	B) 50 nF	C) 100 µF	D) 50 μF	E) 20 μF	
130) What charge accu	mulates on the plates	s of a 2.0-µF air-fille	ed capacitor when it i	s charged until the	130)
potential differen	ce across its plates is	100 V?	1	0	,
Α) 200 μC	B) 50 μC	C) 1	50 μC	D) 100 μC	
131) The potential diff plate separation of this compation?	erence between the p of 6.0 cm is 60 V. Wha	lates of an ideal air t is the strength of	-filled parallel-plate c the electric field betw	capacitor with a reen the plates of	131)
A) 3600 V/m	B) 1000 V/m	C) 60 V/m	D) 2000 V/m	E) 500 V/m	
132) An ideal air-filled 0.040 m ² . What is	l parallel plate capaci the capacitance of th	tor with plate a sep is capacitor with ai	aration of 4.0 cm has r between these plate	a plate area of s? (ε ₀ = 8.85 ×	132)
$10-12 C^{2}(N_{1}, m^{2})$	1	1	1		
$\frac{10^{12} \text{ C}^{-/10} \text{ m}^{-}}{\Lambda}$					
410705	B) 8 9 UF	C) 89 pF	D) 0.89 pF	E) 89 nF	
Ај 0.9 рг	B) 8.9 µF	C) 89 pF	D) 0.89 pF	E) 8.9 nF	
A) 0.9 pr 133) An ideal air-filled If the potential di what are the mag A) 40000 N/C up C) 100 N/C up	B) 8.9 µF I parallel-plate capaci fference between the nitude and direction upward ward	C) 89 pF tor with horizontal plates is 2000 V, wi of the electric field B) 4 D) 10	D) 0.89 pF plates has a plate sep th the top plate at the between the plates? 2000 N/C downward 20 N/C downward	E) 8.9 nF paration of 5.0 cm. higher potential,	133)

 $33 \ \mu\text{C/m}^2$

E) 66 µC/m²

135)	Each plate of an ide	eal air-filled parallel-	plate capacitor ha	is an area of 0.00	90 m^2 , and the		135)
	soparation of the pl	atoc is 0.090 mm. A	n electric field of	2.4 × 10 ⁶ V/m io	procent between	tho	
	plates What is the	capacitance of this ca	n = 8.8	$5 \times 10^{-12} C^{2/N}$	m ²)	uie	
	A) 1500 pF	B) 1800 pF	C) 590 pF	D) 1200 p	F E) 890 1	рF	
) F-	-) F-	-) - · · · F -	_) F		-	
136)) Two large parallel]	plates are separated	by 1.0 mm of air.	If the potential c	lifference betweer	۱ them	n 136)
	is 3.0 V, what is the	magnitude of their	surface charge de	nsities? ($\varepsilon_0 = 8.8$	$5 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}$	ı ²)	
	A) 3.3 × 10-4 C/m	2	B) 5	5.3 × 10-8 C/m ²			
	C) 1.6 × 10-4 C/m	2	D) 2	2.7 × 10-8 C/m ²			
137)	A 4.0-pFcapacitor of densities of ±3.0 nC	onsists of two large c/mm ² . If the potent	closely-spaced pa ial across the plat	rallel plates that es is 27.0 kV wi	have surface char th only air betwee	:ge :n	137)
	them, find the surfa	nce area of each of th	e plates. ($\epsilon_0 = 8.85$	$5 \times 10^{-12} \text{ C}^2/\text{N} \cdot 10^{-12}$	m²)	2	
	A) 0.014 mm ²	B) 36 mm ²	C) 1	8 mm^2	D) 0.028 mm	<u>1</u> 2	
138)) An ideal air-filled p 0.40 mm How far a	parallel-plate capacite part should the plate	or consists of two es be for the capac	circular plates, o itance to be 700.	each of radius .0-pF? (ε ₀ = 8.85 :	×	138)
	$10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$)						
	A) 0.0064 μm	B) 0.00036 µ	um C) (0.00072 μm	D) 0.0032 μn	n	
139)	When the potential 40 V, the electric field m ² , what is the cap A) $_{7.1} \times 10^{-10}$ F B) $_{7.1} \times 10^{-12}$ F C) $_{7.1} \times 10^{-11}$ F D) $_{7.1} \times 10^{-14}$ F E) None of the o	difference between eld between the plate acitance of this capa ther choices is correc	the plates of an id s has a strength o citor? (ε ₀ = 8.85 × t.	eal air-filled par f 800 V/m. If the 10-12 C ² /N · m ²	rallel plate capacit e plate area is 4.0 ×	or is 10-2	139)
SHORT <i>A</i> 140)	ANSWER. Write the An ideal air-filled p	e word or phrase that parallel-plate capacite	t best completes ea or consists of plat	ch statement or es that are 1.0 m	answers the questi m apart and	o n. 140)	
	have an area of 1.5	$\times 10^{-4}$ m ² . The capa	acitor is connected	d to a 12-V poter	ntial source		
	(battery). (ε ₀ = 8.85	$\times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$					
	(a) What is the capa	acitance of this capac	itor?				
	(b) How much chai (c) What is the stree	ge is on each of its p ngth of the electric fie	lates? eld between the p	lates?			
141)	An air-filled parallel plate separation of × 10 ⁻¹² C ² /N · m ²) (a) How much char (b) How much eper	el-plate capacitor is c 0.10 mm. It is then cl ge is stored on each	onstructed with a narged to a poten of its plates?	a plate area of 0.4 tial difference of	40 m ² and a Ξ 12 V? (ε ₀ = 8.85	141)	
			. 1		•.		
142)) A 12.0-V battery (p	otential source) is co	nnected across a 6	5.00-µF air-filled	capacitor.	(a)	How much

```
energy
         142)
can be
stored
this
way?
(b) How
much
excess
charge is
on each
plate of
the
capacitor
?
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
```

143) Measurements sh another of a certa constant. What is	ow that it takes 0.6 in air-filled capacito the potential differe	0 mJ of work to mo r while the potentia nce between the pla	ve 8.0-µC of charge f l difference between ites of this capacitor?	rom one plate to these plates is kept	143)
	A) 23 V	B) 0 V	C) 75 V	D) 55 V	E) 81 V	
144) An air-filled 20-μ this capacitor?	F capacitor has a cha	arge of 60 μ C on its	plates. How much er	nergy is stored in	144)
	A) 100 μJ	B) 80 μJ	C) 90 µJ	D) 70 μJ	E) 110 μJ	
145) An air-filled capa of the plates of th capacitor?	citor has a potential e capacitor has mag	difference between nitude 8.0 μC, what	the plates of 80 V. If is the electrical energy	the charge on each gy stored by this	145)
	A) 320 μJ	B) 60 nJ	C) 50 nJ	D) 30 pJ	E) 640 µJ	
146) When a 4-µF capa energy is stored in	acitor has a potential n this capacitor?	drop of 20 V across	its plates, how muc	h electric potential	146)
	A) 8000 μJ	B) 80 μJ	C) 0.8 µJ	D) 800 µJ	E) 8 μJ	
147) When a 7.00-µF a energy is stored in	ir-filled capacitor ha n this capacitor?	s a charge of ±50.0 µ	ιC on its plates, how	much potential	147)
	A) 149 μJ	B) 169 μJ	C) 159 µJ	D) 143 μJ	E) 179 μJ	
SHORT 148	ANSWER. Write () An ideal, isolated equal and opposi initially is 1.2 mm work must be dou 8.85 × 10 ⁻¹² C ² /N	the word or phrase the variable of the parallel parallel parallel parallel parallel parallel parages of 3.9 nC $_{\rm h}$, and for this separation to pull the plates \cdot m ²)	nat best completes ea late capacitor is not on its plates. The se tion the capacitance apart until their sep	ch statement or answ connected to a batte paration between the is 3.1×10^{-11} F. How aration becomes 7.7	ers the question. ry but has 148) <u></u> e plates w much mm? (ε ₀ =	
MULTIP	LE CHOICE. Ch	oose the one alternati	ve that best complet	es the statement or ar	swers the question.	
149) Two parallel circı	ilar plates, each with	n a radius of ^{8.0 mm}	and carrying equal	-magnitude surface	149)
	charge densities of	of $\pm 2.0 \mu\text{C/m}^2$, are se	parated by a distan	ce of 1.0 mm with or	nly air between	
	them. How much	energy is stored in	these plates? ($\varepsilon_0 = 8$)	85 × 10-12 C2/N · m ²	2) 	
	A) 14 nJ	B) 140 nJ	C) 4	5 nJ	D) 4.6 nJ	

150) Two parallel plates that are initially uncharged are separated by 1.7 mm, have only air between them, and

each have surface areas of 16 cm ² . How much charge must be transferr ed from one plate to the other if 1.9 J of	150)				-
energy are to be					
stored in					
the					
$\epsilon_0 = 8.85$					
× 10-12					
C^2/N ·					
m ²)			()	\mathbf{D} 0 (0 \mathbf{m} C	
	Α) 8.0 μC	B) 5.6 µC	C) 4.0 µC	D) 0.60 mC	
151)	When a 12.0-V batter how much work did	ry causes 2.00 μC of charge the battery do?	e to flow onto the plates	s of an air-filled capacitor,	151)
	A) 24.0 μJ	B) 576 J	C) 12.0 µJ	D) 144 μJ	
152)	If you want to s	store 2.0 mJ of energy in a	10-μF capacitor, how m	uch potential do you need	152)
	A) 15 V	B) 5.0 V	C) 20 V	D) 10 V	
		_,	-)	_)	
153)	A 6.0 μ F capacitor has difference across its	as a potential difference of plates is increased to 9.0 V	5.0 V applied across it how much <i>additional</i> e	s plates. If the potential energy does the capacitor	153)
	store? A) 96 μJ	B) 170 μJ	C) 48 µJ	D) 340 μJ	
SHORT A 154) 155)	A 15-µF capacitor is battery is removed a between the plates a (a) What is the capac (b) What is the poter A 12.6-µF isolated ca 2.1, between the plat is removed. (a) How much exces (b) After removing the plates?	word or phrase that best co connected to a 50-V batter nd a slab of dielectric, hav nd completely fills the spa citance of the capacitor <i>afte</i> ntial difference across the c apacitor is constructed with tes. The capacitor is initiall s charge was originally sto he Teflon, what is the pote	ompletes each statement y and becomes fully chaing a dielectric constant ce between them. r the slab is inserted? capacitor with the dielect n Teflon, having a diele y charged to 1.5 volts, a pred on the plates of the ntial difference across t	or answers the question. arged. The 154) _ t of 5.0, is inserted ctric inserted. ctric constant of 155) _ ind then the Teflon capacitor? he capacitor	

AULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 156) A parallel-plate capacitor consists of two parallel, square plates having dimensions 1.0 cm by 1.0 cm. The plates are separated by 1.0 mm, and the space between them is filled with Teflon, which has a dielectric constant of 2.1. What is the capacitance of this capacitor? (ε ₀ = 8.85 × 10 ⁻¹²						156)
	C ² /N · m ²) A) 0.89 pF	B) 2.1 pF	C) 1	.9 pF	D) 0.44 pF	
157)	A parallel-plate cap is the capacitance of placed between the	pacitor with plate sep of this capacitor if a di e plates, completely fi	aration of 4.0 cm electric material v lling the space? (8	has a plate area with a dielectric c ₀ = 8.85 × 10-12	of $6.0 \times 10^{-2} \text{ m}^2$.What constant of 2.4 is $C^2/N \cdot m^2$)	157)
	A) $_{32} \times 10^{-12}$ F B) $_{3.7} \times 10^{-14}$ F C) $_{22} \times 10^{-14}$ F	1				
	D) $_{16} \times 10^{-14}$ F E) $_{3.7} \times 10^{-12}$ F	,				
158)	The square plates of separated by a diel voltage rating (the energy that can be A) 1.5 mJ	of a 6000-pF parallel-p lectric that is 0.13 mm maximum safe voltag stored in this capacito B) 2.2 mJ	plate capacitor me thickand totally ge) of the capacito or without damag C) 2.6 mJ	asure 30 mm by fills the region l r is 700 V . What ing it? ($\varepsilon_0 = 8.85$ D) 1.8 mJ	30 mm and are between the plates. The it is the maximum $5 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$) E) 2.9 mJ	158)
159)	The square plates of separated by a diel	of a 3000-pF parallel-p lectric that is 0.29 mm	plate capacitor me thick and comple	asure 40 mm by etely fills the reg	40 mm and are ion between the plates.	159)
	A) 45	ric constant of the die B) 61	lectric? ($\epsilon_0 = 8.85$ C) 50	× 10-12 C2/N · n D) 56	n²) E) 67	
160)	An air-filled capace accidentally filled does it continue to	itor carries enough ch with water in such a v store after it is filled?	arge to store 4.00 way as not to disc The dielectric cor	mJ of potential harge its plates.	energy. It is then How much energy is 78 and for air it is	160)
	A) 4.00 mJ	B) 0.03 mJ	C) 0	.051 mJ	D) 312 mJ	
161)	A capacitor has a v removed. What is t filled with mica, ha	roltage of ^{261 V} appl the potential difference aving a dielectric cons	ied across its plate ce across its plates stant of 5.4?	es, and then the if the space bet	voltage source is ween them is then	161)
	A) 428 V	B) 12,466 V	C) 4	8 V	D) 1409 V	
162)	A 6.0- μ F air-filled obattery fully charge transformer oil, whether the battery onto the	capacitor is connected es the capacitor, it is l nich has a dielectric co	l across a 100-V p eft connected and onstant of 4.5. H s process?	otential source (the capacitor is ow much <i>additic</i>	a battery). After the immersed in <i>mal</i> charge flows from	162)
	the battery onto the	e capacitor during un	b process.			

163) A parallel-plate air-filled capacitor is made from two plates that are 0.070 m on each sideprodan energyand spaced 3.0 mm apart. What must the potential difference between the plates be touce density of

0.097 J/m ³ 163) in the region between them? $(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2)$				
MULTIPLE CHOICE. Choos 164) A uniform electric fi field? ($\varepsilon_0 = 8.85 \times 10^{\circ}$	e the one alternative that eld has the strength of 7 ·12 C2/N · m ²)	best completes the statement .0 N/C . What is the electric	or answers the question. energy density of this	164)
A) 5.5 × 10 ¹² J/m ³ C) 3.1 × 10 ⁻¹¹ J/m ³	3	B) 2.2 × 10 ⁻¹⁰ J/m ³ D) 2.8 × 10 ¹² J/m ³		
$^{165)}$ Each plate of a paral the plates is $^{0.030}$ the energy density in A) $= -m^3$	lel-plate air-filled capaci nm An electric field of n the region between the B) = 1 = m ³	itor has an area of 0.0050 m ² 2.8 × 10 ⁶ N/C is present betwee plates? ($\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2$	2, and the separation of ween the plates. What is 2/N · m ²) 3 E) as am ³	165)
SHORT ANSWER. Write the 166) What the electric en 8.85 × 10 ⁻¹² C ² /N · r MULTIPLE CHOICE. Choos	word or phrase that best ergy density at a point 1. n^2 , $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9$ e the one alternative that	completes each statement or 0 cm from a proton? ($e = 1.6$ N · m ² /C ²) best completes the statement	answers the question. × 10-19 C, $\varepsilon_0 = 166$) or answers the question.	
167) A tiny particle carrie distance of ^{3.0 m} fro A) 4.3 mJ/m ³	es a charge of ^{6.0 μC.} Wi om this charge? (ε ₀ = 8.8 B) 1.4 mJ/m ³	hat is the energy density in t $5 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$, $k = 1/4\pi$ C) 0.48 mJ/m ³	the electric field at a $a_{\epsilon_0} = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$ D) 0.16 mJ/m ³	167)
SHORT ANSWER. Write the 168) A -6.5-μC point chan density at the point $\times 10^9$ N \cdot m ² /C ²)	word or phrase that best ge is 8.0 cm from a -17- _µ midway between them?	completes each statement or aC charge. What is the electr $(\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2)$	answers the question. tic energy 168) , $k = 1/4\pi\varepsilon_0 = 9.0$	
169) A 25.0-V potential se parallel-plate capaci it produce between	burce (a battery) is connector having plates that are the plates? ($\varepsilon_0 = 8.85 \times 10^{-10}$	ected across the plates of a 6. e 1.22 mm apart. What energ)-12 C ² /N · m ²)	.66-µF air-filled 169) gy density does	
170) A 10-A current flow (a) How much charg (b) How many elect	s through a wire for 2.0 r ge has passed through th rons have passed any po	min. (e = 1.60 × 10 ⁻¹⁹ C) is wire? int in the wire?	170)	
171) If a charge of 11.4 C through the comput	passes through a compu er?	tter in 1.75 min, what is the a	average current 171)	

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 172) A current of 3.0 A flows through an electrical device for 10 seconds. How many electrons flow

thro ugh

this device during this time? ($e = 1.60 \times 10^{-19}$ C)	172)					-
10 0)	A) _{1.9 x} 10 ²⁰	B) 0.20	C) 20	D) _{19 x} 10	₀ 20 E) 2.0	
173)	What current is flow A) 2.4 A	ing in a wire if 0.42 B) 0.094 A	7 C of charge pas C)	ss a point in the w 0.47 A	vire in 0.20 s? D) 0.20 A	173)
174)	A charge of 12 C pas current in the appara	ses through an eleatus?	ctroplating appa	ratus in 2.0 min.	What is the average	174)
	A) 0.60 A	B) 1.0 A	C)	6.0 A	D) 0.10 A	
175)	How much charge m A) 20 C	nust pass by a poin B) 2.0 C	t in a wire in 10 C)	s for the current in 0.050 C	nb the wire to be 0.50 A? D) 5.0 C	175)
176)	A total of 2.0 × 10 ¹³ e wire? (<i>e</i> = 1.60 × 10 ⁻¹	electrons pass a giv ⁹ C)	ven point in a wi	re in 15 s. What	is the current in the	176)
	Α) 3.2 μΑ	B) 1.3 A	C)	0.21 μΑ	D) 1.3 mA	
177)	What current is flow = 1.60×10^{-19} C)	ing in a resistor if 4	4.0×10^{16} electro	ons pass a point ir	n the resistor in 0.50 s? (e	177)
	A) 0.31 A	B) 0.013 A	C	78 A	D) 6.3 A	
178)	If 3.0×10^{15} electrons current in the wire? (s flow through a se (e = 1.60 × 10 ⁻¹⁹ C)	ection of a wire c	f diameter 2.0 mr	n in 4.0 s, what is the	178)
	A) 0.24 mA	B) 7.5 × 101	4 A C)	$7.5\times10^7\mathrm{A}$	D) 0.12 mA	
179)	A electric heater that electrons that have p	draws 13.5 A of d assed through the	c current has been heater during the	en left on for 10 m at time? (<i>e</i> = 1.60	iin. How many × 10- ¹⁹ C)	179)
	A) 5.1 × 1022	B) 1.0 × 1023	C) 1.8 × 103	D) 8.1 × 1	03 E) 1.5 × 1022	
180)	In an electroplating p current of 2.0 A. Ho silver ions are singly	process, it is desire ow long must the c charged, and the a	d to deposit 40 r current be allowe atomic mass of s	ng of silver on a n ed to run to depos ilver is 108 g/mol.	netal part by using a sit this much silver? The . (<i>e</i> = 1.60 × 10 ⁻¹⁹ C, N _A	180)
	= 6.02 × 10 ²³ atoms/r A) 16 s	nol) B) 20 s	C)	18 s	D) 22 s	
181)	A jeweler needs to el knows that the charg calculated that he mu current does he need	ectroplate gold, ha ge carriers in the io ust deposit ^{0.38} g l to plate the brace	aving an atomic a nic solution are of gold to reach let in 3.0 hours?	mass of 196.97 g/r singly-ionized go the necessary thic (e = 1.60 × 10 ⁻¹⁹ C	nol, onto a bracelet. He ld ions, Au ⁺ , and has ekness. How much , N _A = 6.02×10^{23}	181)
	atoms/mol) A) 17 mA	B) 3400 mA	A C)	1000 mA	D) 62 A	

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.182) What potential difference is required across an 8.0-Ω resistor to cause 2.0 A to flowthro ugh it?

182)

TIPLE CHOICE. Choose	the one alternative that be	est completes the statemen	t or answers the question.	194)
A) 12.1 V	B) 334 V	C) 82.5 V	D) 1320 V	104)
185) What is the voltage d	rop across a 5.0-Ω resisto	r if the current through it	is 5.0 A?	185)
A) 4.0 V	B) 25 V	C) 100 V	D) 1.0 V	,
186) A 4000-Ω resistor is c the resistor?	onnected across a 220-V J	power source. What cur	rent will flow through	186)
A) 18 A	B) 1.8 A	C) 0.055 A	D) 5.5 A	
187) A light bulb operating	g at 110 V draws 1.40 A o	f current. What is its res	sistance?	187)
Α) 12.7 Ω	Β) 154 Ω	C) 109 Ω	D) 78.6 Ω	,
188) A 12-V battery is com in 1.0 min? (<i>e</i> = 1.60 ×	nected across a 100-Ω res 10 ⁻¹⁹ C)	istor. How many electro	ons flow through the wire	188)
A) 2.5 × 1019	B) 4.5 × 1019	C) 1.5 × 1019	D) 3.5 × 1019	

through a circuit device for various potential differences across it. Assume that all the numbers shown are accurate to two significant figures. What is the resistance of this device?

190) The graph shown in the figure shows the results of measurements of the dc current through a circuit device for various potential differences across it. Assume that all the numbers shown are accurate to two significant figures. What is the resistance of this device?

190) _____

current of 2.0 amps flows through the wire. What is the diameter of this wire? The resistivit y of copper is $1.72 \times 10^{-8} \Omega \cdot$ m.	191)				
192)	A 25-m wire of diameter potential difference. (a) What is the resistan	er 0.30 mm draws 0.499 ce of the wire?	9 A when connected across	a 3.0-V 192) _	
MULTIP 193)	LE CHOICE. Choose the A certain metal wire have How long would it have A) 5.9 km B) 590 m C) 5.9 m D) 5.9 × 106 m E) 5.9 × 104 m	ne one alternative that h as a cross-sectional area re to be to have a resist	Dest completes the statement a of 1.0 cm ² and a resistivit ance of 1.0 Ω ?	t or answers the question. y of $1.7 \times 10^{-8} \Omega \cdot m$.	193)
194)	What is the resistance α and a resistivity of 1.68	of 1.0 m of a solid cylin × 10 ⁻⁸ Ω · m? B) 0.0021 Ω	drical metal cable having a	diameter of 0.40 inches $D = 0.00012 O$	194)
195)	What is the resistance of resistivity of the metal A) 0.0080Ω	of a cylindrical metal ro is $1.4 \times 10^{-8} \Omega \cdot m$? B) 0.80Ω	pd 1.0 cm in diameter and 4 C) 6.3 Ω	L5 m long, if the D) 0.0063 Ω	195)
196)	A certain metal has a re this metal. If this wire l resistance will be 15 Ω A) 16 cm	esistivity of 1.68 × 10 ⁻⁸ nas a diameter of 0.15 r B) 1.6 m	$\Omega \cdot m$. You have a long spont nm, how long should you C) 16 m	ool of wire made from cut a segment so its D) 16 mm	196)
197)	A 120-m long metal wi is the diameter of the w	re having a resistivity o vire?	of $1.68 imes 10^{-8} \Omega \cdot \mathrm{m}$ has a re	sistance of 6.0 Ω . What	197)
	A) 0.65 mm	B) 0.65 m	C) 0.65 cm	D) 0.065 mm	
198)	A rod is 4.0 m long and	l has a square cross-sec	tion that is 1.5 cm on each	side. An ohmmeter	mad 198)

198) A rod is 4.0 m long and has a square cross-section that is 1.5 cm on each side. An ohmmetermad 1measures $0.040 \ \Omega$ across its ends. What is the resistivity of the material from which this rod ise?

	11) 0.020 22 111		D) 2.3 ×	10 0 22 · 111		
	C) 1.5 × 10 ⁻⁴ Ω · m		D) 0.015	$\Omega \cdot m$		
199)	Calculate the current	through a 10.0-m lo	ng 22-gauge nichror	ne wire with a ra	dius of 0.321 mm if	199)
i	it is connected across	a 12.0-V battery. T	The resistivity of the	nichrome is 1.00	× 10-6 Ω · m.	
	A) 0.776 A	B) 0.388 A	C) 61.8 /	A	D) 30.9 A	
200) .	A metal bar is 20 cm l	long and has a recta	ngular cross-section	measuring 1.0 cm	n × 2.0 cm. What	200)
i	is the voltage drop alo is 1.68 × 10 ⁻⁸ $\Omega \cdot m$.	ong its length when	it carries a 4000-A c	urrent? The resi	stivity of the metal	
	A) 0.67 V	B) 0.34 V	C) 0.034	V	D) 0.067 V	
201)	A 1.0-m length of nicl	hrome wire has a ra	dius of 0.50 mm and	a resistivity of 1.	0 × 10 ⁻⁶ Ω · m.	201)
,	When this wire carrie	es a current of 0.50 A	, what is the voltage	e across its ends?		
	A) 0.0030 V	B) 1.6 V	C) 0.32 V	V	D) 0.64 V	
202)	A 1.0-mm diameter e	xtension cord is mad	de of metal having a	resistivity of 1.68	$3 \times 10^{-8} \Omega \cdot m.$	202)
1	When it carries a curr that are 100 m apart?	ent of 15 A, what is	the potential differe	nce between two	points in the cord	
	A) 23 V	B) 41 V	C) 32 V		D) 12 V	
203) -	The resistivity of gold	l is 2.44 × 10 ⁻⁸ Ω · n	ⁿ at a temperature o	f 20°C. A gold wi	re that is 0.90 mm	203)
j	in diameter and 23 cm	n long carries a curr	ent of 260 mA. How	many electrons e	each second pass a	
:	given cross section of	the wire at 20°C? (<i>e</i>	$r = 1.60 \times 10^{-19} \text{ C}$			
	A \ 10	D \ 10	\sim 11	D) 00		
	A) 17	B) 18	C) 14	D) 22	E) 15	
	A) 17 1.6 × 10	B) 18 1.6 × 10	C) 14 9.2 × 10	D) 22 3.8 × 10	E) 15 6.3 × 10	
204)]	A) 17 1.6 × 10 How much current w	B) 18 1.6 × 10 rill be flowing throug	C) 14 9.2 × 10 gh a ^{48.0-m} length	D) 22 3.8 × 10 of copper wire w	E) 15 6.3 × 10 rith radius ^{4.8} mm	204)
204)]	A) 17 1.6 × 10 How much current w if it is connected to a s	B) 18 1.6 × 10 rill be flowing throu source supplying ⁶⁸	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity	D) 22 3.8 × 10 of copper wire w y of the metal is 1	E) 15 6.3×10 with radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$.	204)
204) j	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A	B) 18 1.6 × 10 rill be flowing throu source supplying B) 5800 A	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity C) 3500	D) 22 3.8 × 10 of copper wire w y of the metal is 1 A	E) 15 6.3×10 with radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA	204)
204) j	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length	B) 18 1.6 × 10 Fill be flowing throug source supplying 65 B) 5800 A of metal wire is cont	C) 14 9.2 × 10 gh a ^{48.0-m} length 5.0 V? The resistivity C) 3500 nected to a ^{1.5-V} ba	D) 22 3.8 × 10 of copper wire w 7 of the metal is 1 A attery, a current o	E) 15 6.3×10 with radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA of 2.0 mA flows	204) 205)
204)	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th	B) 18 1.6 × 10 Fill be flowing throug source supplying 65 B) 5800 A of metal wire is considered the wire	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity C) 3500 nected to a 1.5-V ba ire? The resistivity o	D) 22 3.8 × 10 of copper wire w 7 of the metal is 1 A attery, a current of f the metal is 2.24	E) 15 6.3×10 Fith radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA of 2.0 mA flows $4 \times 10^{-8} \Omega \cdot m$.	204) 205)
204) <u>;</u> 205) •	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 μm	B) 18 1.6 × 10 will be flowing through source supplying 65 B) 5800 A of metal wire is considered the with B) 8.7 μm	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity C) 3500 nected to a 1.5-V ba ire? The resistivity o C) 4.4 µ	D) 22 3.8 × 10 of copper wire w 7 of the metal is 1 A attery, a current of f the metal is 2.24 m	E) 15 6.3×10 Fith radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA f 2.0 mA flows $4 \times 10^{-8} \Omega \cdot m$. D) 4.5 µm	204) 205)
204) : 205) • 206) •	A) 17 1.6×10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 µm The resistance of a 10	B) 18 1.6 × 10 Fill be flowing throug source supplying 65 B) 5800 A of metal wire is conta the diameter of the with B) 8.7 μm 0-cm wire of cross so	C) 14 9.2 × 10 gh a $48.0-m$ length 5.0 V? The resistivity C) 3500 nected to a $1.5-V$ ba ire? The resistivity o C) 4.4 µ ectional area 2 × 10 ⁻	D) 22 3.8×10 of copper wire w y of the metal is 1 A attery, a current of f the metal is 2.24 m -6 m ² is 400 Ω . V	E) 15 6.3×10 Fith radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA of 2.0 mA flows $4 \times 10^{-8} \Omega \cdot m$. D) 4.5 µm What is the	204) 205) 206)
204) ; 205) ; 206) ;	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 μ m The resistance of a 10 resistivity of the mate A) a a 10 ⁻⁶ a	 B) 18 1.6 × 10 rill be flowing throug source supplying 63 B) 5800 A of metal wire is conta the diameter of the with B) 8.7 μm 0-cm wire of cross section of the wire of cross section of the wire of the wire of the section of	C) 14 9.2 × 10 gh a $48.0-m$ length 5.0 V? The resistivity C) 3500 nected to a $1.5-V$ ba ire? The resistivity o C) 4.4 μ ectional area 2 × 10 ⁻⁵ s wire is made?	D) 22 3.8 × 10 of copper wire w y of the metal is 1 A attery, a current of f the metal is 2.24 m •6 m ² is 400 Ω. V	E) 15 6.3×10 Fith radius 4.8mm $.68 \times 10^{-8} \Omega \cdot m.$ D) 230 nA f 2.0mA flows $4 \times 10^{-8} \Omega \cdot m.$ D) 4.5 µm What is the	204) 205) 206)
204) ; 205) ; 206) ,	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 μ m The resistance of a 10 resistivity of the mate A) $8.0 \times 10^{-6} \Omega_V$ B) $8.0 \times 10^{-4} \Omega_V$	 B) 18 1.6 × 10 rill be flowing througout source supplying 63 B) 5800 A of metal wire is contact of the with the diameter of the with B) 8.7 μm 0-cm wire of cross serial from which this 	C) 14 9.2 × 10 gh a $48.0-m$ length 5.0 V? The resistivity C) 3500 nected to a $1.5-V$ ba ire? The resistivity o C) 4.4 μ ectional area 2 × 10 ⁻⁵ s wire is made?	D) 22 3.8 × 10 of copper wire w y of the metal is 1 A attery, a current of f the metal is 2.24 m •6 m ² is 400 Ω. V	E) 15 6.3×10 with radius 4.8mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA f 2.0mA flows $4 \times 10^{-8} \Omega \cdot m$. D) 4.5 µm What is the	204) 205) 206)
204) : 205) ; 206) .	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 μ m The resistance of a 10 resistivity of the mate A) $8.0 \times 10^{-6} \Omega v$ B) $8.0 \times 10^{-4} \Omega \cdot n$ C) $0.80 \times 10^{-4} \Omega$.	 B) 18 1.6 × 10 rill be flowing througout source supplying 65 B) 5800 A of metal wire is contact of the with the diameter of the with B) 8.7 μm 0-cm wire of cross serial from which this source source source source source source the source sourc	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity C) 3500 nected to a 1.5-V ba ire? The resistivity o C) 4.4 µ ectional area 2 × 10 ⁻⁵ s wire is made?	D) 22 3.8×10 of copper wire w y of the metal is 1 A attery, a current of f the metal is 2.24 m $^{-6}$ m ² is 400 Ω . V	E) 15 6.3×10 with radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA of 2.0 mA flows $4 \times 10^{-8} \Omega \cdot m$. D) 4.5 µm What is the	204) 205) 206)
204) ; 205) ; 206) ;	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 μ m The resistance of a 10 resistivity of the mate A) 8.0 × 10 ⁻⁶ Ω v B) 8.0 × 10 ⁻⁴ $\Omega \cdot$ m C) 0.80 × 10 ⁻⁴ Ω .	 B) 18 1.6 × 10 rill be flowing througout the supplying 63 B) 5800 A of metal wire is considered to the wire of the wire of the wire b) 8.7 μm 0-cm wire of cross serial from which this of the serial from which this of the wire of the wire b) 8.7 μm 	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity C) 3500 nected to a 1.5-V ba ire? The resistivity o C) 4.4 µ ectional area 2 × 10 ⁻⁵ s wire is made?	D) 22 3.8×10 of copper wire w y of the metal is 1 A attery, a current of f the metal is 2.24 m $\cdot 6 \text{ m}^2$ is 400 Ω . V	 E) 15 6.3 × 10 ith radius 4.8 mm .68 × 10⁻⁸ Ω · m. D) 230 nA f 2.0mA flows i × 10⁻⁸ Ω · m. D) 4.5 μm Vhat is the 	204) 205) 206)
204) : 205) · 206) ·	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 μ m The resistance of a 10 resistivity of the mate A) 8.0 × 10 ⁻⁶ Ω v B) 8.0 × 10 ⁻⁶ Ω · m C) 0.80 × 10 ⁻⁴ Ω · m C) 0.80 × 10 ⁻⁶ Ω . E) 0.80 × 10 ⁻⁵ Ω .	 B) 18 1.6 × 10 rill be flowing througout the supplying 63 B) 5800 A of metal wire is contained diameter of the wire of the wire B) 8.7 μm 0-cm wire of cross serial from which this serial from which this m m m 	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity C) 3500 nected to a 1.5-V ba ire? The resistivity o C) 4.4 µ ectional area 2 × 10 ⁻⁵ s wire is made?	D) 22 3.8×10 of copper wire w y of the metal is 1 A attery, a current of f the metal is 2.24 m $^{-6}$ m ² is 400 Ω . V	E) 15 6.3×10 Fith radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA f 2.0mA flows $4 \times 10^{-8} \Omega \cdot m$. D) 4.5 µm What is the	204) 205) 206)
204) : 205) · 206) ·	A) 17 1.6 × 10 How much current w if it is connected to a s A) 38 × 108 A When a 2.0-m length through it. What is th A) 12 μ m The resistance of a 10 resistivity of the mate A) $8.0 \times 10^{-6} \Omega v$ B) $8.0 \times 10^{-4} \Omega \cdot m$ C) $0.80 \times 10^{-4} \Omega$. D) $0.80 \times 10^{-6} \Omega$. E) $0.80 \times 10^{-5} \Omega$. The resistivity of the mate	 B) 18 1.6 × 10 rill be flowing througout source supplying 65 B) 5800 A of metal wire is contacted diameter of the wite of the wite B) 8.7 μm 0-cm wire of cross set of cross set of cross set of the which this m m m	C) 14 9.2 × 10 gh a 48.0-m length 5.0 V? The resistivity C) 3500 nected to a 1.5-V ba ire? The resistivity o C) 4.4 μ : ectional area 2 × 10 ⁻⁵ s wire is made?	D) 22 3.8×10 of copper wire w y of the metal is 1 A attery, a current of f the metal is 2.24 m $^{-6}$ m ² is 400 Ω . W	E) 15 6.3×10 Fith radius 4.8 mm $.68 \times 10^{-8} \Omega \cdot m$. D) 230 nA f 2.0 mA flows $4 \times 10^{-8} \Omega \cdot m$. D) 4.5 µm What is the	204) 205) 206) 207)

A) 1.12Ω B) 112Ω C) 11.2Ω D) 0.0112Ω E) 0.112Ω

20	08) The resistivity of a 10 ⁻⁶ m ² . If the wire A) 90 mV	1.0 m long copper wi carries a current of 0 B) 1.7 mV	re is 1.72 × 10 ⁻⁸ Ω .20 A, what is the C) 0.90 mV	• m and its cross voltage across t D) 17 mV	s sectional area is 2.0 × he wire? E) 10 mV	208)
20	09) How much current it is connected to a	will flow through a power source supply	^{32.0–m} length of ing ^{45.0 V?} The r	metal wire with esistivity of the	a radius of $\frac{3.2 \text{ mm}}{1.68 \times 10^{-8} \Omega}$ if	209)
	м. А) 2700 А	B) _{27 x 10} 8 /	C) 16	500 A	D) 240 nA	
21	10) When a potential d flows. If the metal the metal-A wire, h wires are the same, 1.68 × 10 ⁻⁸ Ω · m, an	ifference is applied as -A wire is replaced w ow much current wil and the voltage diffe ad the resistivity of m	cross a piece of wi vith a wire made o l flow through the erence remains un netal B is 1.59 × 10	ire made of meta of metal B having e metal-B wire? ' changed. The rea -8 $\Omega \cdot$ m.	ll A, a ^{1.0-mA} curren g twice the diameter o The lengths of both sistivity of metal A is	t 210) f
	A) 4.2 mA	B) 2.1 mA	C) 3.	8 mA	D) 1.1 mA	
21	11) A tube of mercury the mercury. How A) 29 A	with resistivity 9.84 × nuch current is flowi B) 180 A	$10^{-7} \Omega \cdot m$ has a fing in the tube, if C) 28	uniform electric the radius of the 30 A	field of 23 N/C inside tube is 0.495 mm? D) 18 A	211)
SHOR 21	F ANSWER. Write the 12) The power rating o (a) What is the max (b) What is the max	e word or phrase that f a 400- Ω resistor is 0 imum safe voltage ac imum current the res	best completes ead .800 W. cross this resistor? sistor can safely d	ch statement or a	nswers the question. 212)	
21	13) A resistor operated(a) What is the norr(b) What is the resist	at 120 V dc is rated a nal operating current stance of the resistor?	tt 1.40 kW. through the resis	stor?	213)	
21	14) A flashlight draws charge flows from t how many electron	0.133 A from a 3.0-V he battery, (b) how n s have passed any po	battery pack. In 2 nuch energy does vint in the circuit e	.0 minutes (a) hc the battery supp every second?	w much 214) bly, and (c)	
21	15) An instrument is ra (a) What current do (b) What is its resis (c) How many kilow	ted at 250 W if it is co bes it draw under nor tance? watt-hours does it use	onnected across a mal operation? e in a day if it is le	120-V dc power ft on all the time	supply. 215) e?	
MULT	IPLE CHOICE. Choo	se the one alternative	that best complete	s the statement o	or answers the question	
21	16) A 200-W light bulb this bulb?	is connected across a	110-V dc power	supply. What cu	rrent will flow throug	h 216)
	A) 0.36 A	B) 0 A	C) 1.8 A	D) 0.90 A	E) 0.60 A	
21	17) A 100-W resistance heater?	heater is connected t	o a 110-V dc sour	ce. What current	flows through the	217)
	A) 4.4 A	B) 0.91 A	C) 2.2 A	D) 1.1 A	E) 3.3 A	
21	 18) A 100-W light bulb A) 120 Ω B) 100 Ω C) 6.0 × 10⁻³ Ω D) 8.0 × 10⁻³ Ω 	is operated by a 110-	V dc source. Wha	t is the resistanc	e of this bulb?	218)

219) If the power rating of a 400- Ω resistor is 0.800 W, what is the maximum voltage that can safely be					
A) 110 V	B) 170 V	C) 17.9	νV	D) 1.80 V	
,	_)	-,		_)	
220) If the power rating draw?	of a 400- Ω resistor is (0.80 W, what is the	maximum curre	nt it can safely	220)
A) 45 mA	B) 4.4 mA	C) 320 mA	D) 2.0 mA	E) 18 mA	
221) A light bulb operat flowing through th	ing at a dc voltage of 1 is bulb?	120 V has a power :	rating of 60 W. F	Iow much current is	221)
A) 1.5 A	B) 1.0 A	C) 2.5 A	D) 0.50 A	E) 2.0 A	
222) A light bulb operat dissipated in this b	ing at a dc voltage of 1 ulb?	120 V has a resistar	nce of 200 Ω. How	w much power is	222)
A) 60 W	B) 72 W	C) 7.2 W	D) 14 mW	E) 100 W	
223) The power rating o connect across its e	f a 400- Ω resistor is 0.2 nds?	25 W. What is the r	naximum voltag	e you can safely	223)
A) 20 V	B) 10 V	C) 40 V	D) 50 V	E) 30 V	
224) When 5.00 A is flow device?	ving through an 10.0-9	Ω device, how muc	h power is being	g dissipated in the	224)
A) 250 W	B) 500 W	C) 50.0) W	D) 2.50 kW	
225) A resistance heater A) 12 A	is rated at 1200 W wh B) 0.090 A	en operating at 110 C) 1.0) V dc. What cu A	urrent will it draw? D) 11 A	225)
226) A 150-W light bulb A) 1.4 A	is designed to operate B) 0.73 A	e at 110 V dc. How C) 2.0	much current do A	bes it draw? D) 15 A	226)
227) What is the resistar A) 144 Ω	nce of a 0.100-kW light B) 1.2 Ω	bulb designed to b C) 0.83	be used in a 120- Ω	V circuit dc? D) 12.0 Ω	227)
228) A toaster is rated at	t 800 W when operatir	ng at 120 V dc. Wl	nat is the resistar	nce of its heating	228)
A) 16 Ω	Β) 0.15 Ω	C) 6.7	Ω	D) 18 Ω	
229) A 200-Ω resistor is A) 0.35 A	rated at 1/4 W. What B) 0.035 A	t is the maximum c C) 0.25	urrent it can safe 5 A	ely draw? D) 50 A	229)
230) A 25-W soldering in A) 0.48 kΩ	ron runs on 110 V dc. B) 2.8 kΩ	What is its resista C) 4.4	nce? Ω	D) 0.0020 Ω	230)
231) How much does it A) 16¢	cost to operate a 25-W B) \$1.50	soldering iron for C) 1.6¢	8.0 hours if ener	gy costs 8.0¢/kWh? D) 25¢	231)
232) How much energy A) 0.0080 kWh	does a 100-W light bu B) 0.80 kWh	lb use in 8.0 hours C) 800	? kWh	D) 13 kWh	232)

233) A 1500-W heater is connected to a 120-V line for 2.0 hours. How much heat energy is

prod uced?

	A) 1.5 kJ	B) 11 MJ	C) 0.18 MJ	D) 3.0 kJ	
234)	A battery is rated a A) 6.9 MJ	at 12 V and 160 A-h. B) 6.0 kJ	How much energy does this b C) 1.9 kJ	pattery store? D) 1.9 MJ	234)
235)	An electronic com	popent with a 3-O re-	sistor is rated for use at powe	r levels not exceeding	235)
200)	11W. How much	gurrent can cafely flow	through the component?	r levels not exceeding	200)
	A) 33 A	B) 0.27 A	C) 1.91 A	D) 1.11 A	
236)	A 100-W driveway each kilowatt-hou:	v light bulb is on 10 ho r of electricity used, es	urs per day. If the power cost to oper-	mpany charges 10¢ for ate the bulb if it is used	236)
	A) \$37	B) \$3.65	C) \$73	D) \$7.30	
237)	A 400-W compute: 10¢ per kWh, how A) \$1200	r (including its monito much does it cost to r B) \$15	r) is turned on for 8.0 hours p un the computer annually for C) \$150	er day. If electricity costs a 365-day year? D) \$120	237)
238)	The nichrome heat rate of 2.0 kW. Th nichrome wire by wire will depend of	ting element in an elective heating element sho ne heating element sho 10%. (Assume the ter	tric drier operates on 240 V ar orts out and, in repairing it, th nperature is unchanged. In What effect will the repair hay	nd generates heat at the e repairman shortens the reality, the resistivity of the e on the power dissipated	238)
	in the heating elen	nent?	vitat cirect will the repair hav	e on the power dissipated	
	A) The power ir	creases to 2.2 kW.	B) The power de	creases to 1.8 kW.	
	C) The power is	still 2.0 kW.	D) None of the g	iven answers is correct.	
239)	When a 14.0-A cur energy costs \$0.090	rent flows through an	8.00-Ω device for 24.0 hours,	how much does this cost if	239)
	A) \$1.04	B) \$3.39	C) \$2.16	D) \$0.24	
240)	A 9.0-V battery cos and needing to be cost of the energy	sts \$1.49 and will run a replaced. If this batte provided by the batter	n portable CD player for 6.0 h ery supplies a current of 25 m y in dollars per kWh?	ours before running down A to the player, what is the	240)
	A) \$1100/kWh	B) \$11,000/kV	Wh C) \$110/kWh	D) \$11/kWh	
241)	A 200- Ω resistor is across it?	rated at 1/4 W. Wha	t is the maximum voltage tha	t can safely be connected	241)
	A) 0.71 V	B) 0.25 V	C) 7.1 V	D) 50 V	
242)	A simple circuit ha much energy is dis	as a total resistance of a sipated in this circuit :	30 Ω . If a 2.0-A current is main a fixed of the second	ntained in this circuit, how	242)
	A) 24 J	B) 48 J	C) 480 J D) 4.8 J	E) 6.0 J	
243)	The resistivity of g diameter and 43 cr 20°C?	old is ^{2.44} × 10 ⁻⁸ Ω ·r n long, carries a currer	ⁿ at a temperature of 20°C. A nt of 880 mA. What power is o	gold wire, 1.3 mm in dissipated in this wire at	243)
	A) 3.8 mW	B) 6.1 mW	C) 1.5 mW D) 5.0 m	mW E) 2.7 mW	
244)	A 120- Ω laborator resistor?	y resistor is rated at 0.2	25 W. How much current can	safely flow through the	244)
	A) 2.1 mA	B) 22 mA	C) 46 mA	D) 30 A	

245)	The voltage drop acr	oss a metal bar is 3.0 V	while a current of ^{3.0 mA}	flows through it. How	245)
	A) 3.0 kW	B) 1.0 kW	C) 27 μW	D) 9.0 mW	
246)	A battery is rated suc much current can it c	ch that it provides ^{3.0} m leliver?	W of power at 10.0 V whe	n fully charged. How	246)
	A) 0.30 mA	B) 0.55 mA	C) 33 kA	D) 3.3 kA	
247)	A device with a resis the device use?	tance of $\frac{200.0 \text{ k}\Omega}{\text{ is con}}$	nected to a $10.0-V$ battery	. How much power does	247)
	A) 20,000 kW	B) 0.50 mW	C) 0.050 mW	D) 2000 kW	
248)	A 5.0-V battery that of must flow between the Assume that the volt A) 0.010 C	can store 900.0 J of energy the battery's terminals to age of the battery remain B) 0.03 C	gy is connected to a resistor completely drain the batter ns the same until it is totall C) 180 C	r. How much charge ry if it is fully charged? y drained. D) 4500 C	248)
249)	The heating element resistivity of nichrom is designed to operat A) 62 W	of a toaster is a 7.0-m ler ne at the operating tempe e at a voltage of 120 V. H B) 58 W C)	ngth of nichrome wire of di erature of the toaster is 1.3 Iow much power does it du 66 W D) 60 W	ameter 0.22 mm. The × 10 ⁻⁶ Ω · m. The toaster raw in normal operation? E) 64 W	249)
250) MULTIP 251)	A battery supplies 6. this resistor dissipate LE CHOICE. Choose A 5.0-V battery storin	0 mA to a 12-Ω resistor f e in this time? e the one alternative that ng 75.0 kJ of energy supp	or 1.5 h. How much electri best completes the statemen blies ^{1.5 A} of current to a c	c energy does 250) _ t or answers the question. ircuit. How much energy	251)
	does the battery have A) 75 kJ	e left after powering the B) 27 kJ	circuit for 1.0 k? C) 48 kJ	D) 73 kJ	
252)	A carbon resistor has temperature of 120°C A) 15 Ω	s a resistance of 18 Ω at a C? The temperature coeff B) 16 Ω	temperature of 20°C. Wh icient of resistivity for carb C) 17 Ω	nat is its resistance at a on is -5.0 × 10 ⁻⁴ /C°. D) 18 Ω	252)
253)	The temperature coerresistance of <i>R</i> at a terresistance of <i>R</i> at a terresistance	fficient of resistivity of p mperature of 23°C, to w to 2 <i>R</i> ?	latinum is 3.9 × 10 ⁻³ /C°. I hat temperature must it be	f a platinum wire has a heated in order to	253)
	A) 300°C	B) 280°C	C) 730°C	D) 930°C	
254)	A platinum wire is u platinum wire is 2.00 the melting point of i $10-3/C^{\circ}$	sed to determine the me 0 Ω at 20°C and increase indium? The temperatur	Iting point of indium. The es to 3.072 Ω as indium just e coefficient of resistivity fo	e resistance of the starts to melt. What is or platinum is 3.927 ×	254)
	A) 156°C	B) 136°C	C) 351°C	D) 116°C	
SHORT A 255)	NSWER. Write the A tungsten wire is 1. mA flows through th $4.5 \times 10^{-3}/\text{C}^{\circ}$, and its	word or phrase that best 50 m long and has a diar is wire. The temperature resistivity at 20°C is 5.6	completes each statement or neter of 1.00 mm. At 20°C a e coefficient of resistivity fo × $10^{-8} \Omega \cdot m$.	answers the question. a current of 50 (a) p or this tungsten is Whad t is a	otential ifference cross the ends

t is across the ends

the of this wire at

20°C? 255) (b) If the wire temperat ure increases by 100 C°, what potential differenc e across its ends is now required to produce a current of 50 mA? 256) A 4.0- μ F capacitor and an 8.0- μ F capacitor are connected together. What is the 256) _ equivalent capacitance of the combination if they are connected (a) in series or (b) in parallel? 257) You have three capacitors with capacitances of 4.00 μ F, 7.00 μ F, and 9.00 μ F. What is the 257) _ equivalent capacitance if they are connected (a) in series and (b) in parallel?

258) A network of capacitors is connected across a potential difference V_0 as shown in the figure. 258) –

(a) What should V_0 be so that the 60.0- μ F capacitor will have 18.0 μ C of charge on each of its plates?

(b) Under the conditions of part (a), how much total energy is stored in this network of capacitors?

 $V_0 = ? 20.0 \ \mu F = 10.0 \ \mu F$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

259) ____

259) A network of capacitors is mostly inside a sealed box, but one capacitor $C\chi$ is sticking out, as shown in the figure. When you connect a multimeter across points *a* and *b*, it reads 27.0 μ F. What is $C\chi$?

260) A 2.0-µF capacitor and a 4.0-µF capacitor are connected in series across an 8.0-V potential source. What is the
| potential
differenc | 260) | | | | |
|------------------------|--------|----------|----------|----------|----------|
| e across | | | | | |
| the | | | | | |
| 2.0-µF | | | | | |
| capacitor | | | | | |
| ? | | | | | |
| | A) 0 V | B) 3.6 V | C) 8.0 V | D) 5.3 V | E) 2.7 V |

- 261) A 2.0-μF capacitor and a 4.0-μF capacitor are connected in series across an 8.0-V potential source.261)What is the charge on the 2.0-μF capacitor?A) 2.0 μCB) 4.0 μCC) 25 μCD) 11 μCE) 12 μC

263) A system of four capacitors is connected across a 90-V voltage source as shown in the figure. What is the equivalent capacitance of this system?

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

264) A system of four capacitors is connected across a 90-V voltage source as shown in the figure.

- (a) What is the charge on the $4.0-\mu$ F capacitor?
- (b) What is the charge on the 2.0-µF capacitor?

263) ____

- 265) A system of four capacitors is connected across a 90-V voltage source as shown in the figure.
 - (a) What is the potential difference across the plates of the 6.0-µF capacitor?
 - (b) What is the charge on the 3.0- μ F capacitor?

MU	LTIPLE CHOICE. 266) A 3.0-μF, a 12 would a sing	Choose the one alternative th 2- μ F, and a ^{26-μF} capacitor a	at best completes the state are connected in parallel.	ment or answers the question. How much capacitance	266)
	A) 41 μF	B) 12 μF	C) 3.0 µF	D) 26 μF	
	267) A 5.0-μF, a 14 single capacit	4-μF, and a 21-μF capacitor ar tor need to have to replace the	re connected in series. Ho e three capacitors?	w much capacitance would a	267)
	Α) 2.0 μF	B) 3.6 μF	C) 40 μF	D) 3.1 μF	
	268) A 4.0-μF and in parallel to replace this c	a 15.0-µF capacitor are conne a ^{28.0-µF} capacitor. How n ombination of three capacitor	ected in series, and the ser nuch capacitance would a rs?	ies arrangement is connected a single capacitor need to	268)
	Α) 36 μF	B) 19 μF	C) 31 µF	D) 14 μF	
SHC	DRT ANSWER. W 269) Four 16-μF ca capacitance o (a) in series? (b) in parallel (c) such that t with the rema	rite the word or phrase that be apacitors are connected in cor of this combination if they are ? two of them are in parallel wi aining two capacitors?	est completes each statement nbination. What is the end connected th each other and that con	nt or answers the question. quivalent 269) _ mbination is in series	
	270) Three capacit across a 12.0- (a) How muc (b) What is th	cors of capacitance 5.00 μF, 10 V potential difference (a batte h charge is stored in the 5.00- ne potential difference across	.0 μF, and 50.0 μF are con ery). μF capacitor? the 10.0-μF capacitor?	nnected in series 270) _	
	271) A 1.0-μF capa combination potential diff series or (b) in	acitor and a 2.0-µF capacitor a is connected across a 3.0-V pc erence across the 2.0-µF capac n parallel?	are connected together, an otential source (a battery). citor if the capacitors are o	nd then that 271) What is the connected (a) in	

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 272)

Two capaci

265) _____

274) Three capacitors of equal capacitance are arranged as shown in the figure, with a voltage source across the combination. If the voltage drop across C_1 is ^{60.0 V}, what is the voltage drop across C_3 ?

A) 120 V	B) 180 V	C) 60.0 V	D) 240 V
----------	----------	-----------	----------

275) Three capacitors are arranged as shown in the figure, with a voltage source connected across the 275) _____ combination. *C*₁ has a capacitance of ^{5.0} pF, ^{*C*₂} has a capacitance of ^{10.0} pF, and ^{*C*₃} has a capacitance of ^{15.0} pF. Find the potential drop across the entire arrangement if the potential drop across *C*₂ is ^{172.0} V.

276) The capacitive network shown in the figure is assembled with initially uncharged capacitors.
276) Assume that all the quantities in the figure are accurate to two significant figures. The switch S in the network is kept open throughout. What is the total energy stored in the seven capacitors?

$$V_{ab} = +100V$$
9 μ F $f = 15 \mu$ F $f = 6 \mu$ F
 $f = 16 \mu$ F $f = 16 \mu$ F $f = 12 \mu$ F
A) 48 mJ B) 96 mJ C) 120 mJ D) 144 mJ E) 72 mJ

277) The network shown is assembled with uncharged capacitors X, Y, and Z, with $C_X = 5.0 \,\mu\text{F}$, $C_Y = 4.0 \,\mu\text{F}$ and $C_Z = 3.0 \,\mu\text{F}$. The switches S₁ and S₂ are initially open, and a potential difference $V_{ab} = 120$ V is applied between points *a* and *b*. After the network is assembled, switch S₁ is then closed, but switch S₂ is kept open. How much energy is finally stored in capacitor X?

²⁷⁸⁾ The network shown is assembled with uncharged capacitors X, Y, and Z, with $C_X = 3.-\mu F$, $C_Y = 2.-\mu F$ and $C_Z = 3.0 \mu F$. The switches S₁ and S₂ are initially open, and a potential difference $V_{ab} = 120$ V is applied between points *a* and *b*. After the network is assembled, switch S₁ is then closed, but switch S₂ is kept open. How much charge is finally stored in capacitor Y?

A) 180 μC	B) 72 μC	C) 110 µC	D) 220 µC	E) 140 µC
/	/ /	/ /	/	/ /

279) _

²⁷⁹⁾ The network shown is assembled with uncharged capacitors X, Y, and Z, with $C_X = 9.0 \,\mu\text{F}$, $C_Y = 7.0 \,\mu\text{F}$ and $C_Z = 6.0 \,\mu\text{F}$. The switches S₁ and S₂ are initially open, and a potential difference $V_{ab} = 120$ V is applied between points *a* and *b*. After the network is assembled, switch S₁ is then closed, but switch S₂ is kept open. What is the final potential difference across capacitor *Z*?

280) The network shown is assembled with uncharged capacitors X , Y, and Z, with $C_X = 4.0 \ \mu\text{F}$, $C_Y = 280$) _____ 6.0 μF , and $C_Z = 5.0 \ \mu\text{F}$. The switches S₁ and S₂ are initially open, and a potential difference V_{ab} = 120 V is applied between points *a* and *b*. After the network is assembled, switch S₁ is then closed, but switch S₂ is kept open. What is the final potential difference across capacitor X?

281) A group of 1.0-μF, 2.0-μF, and 3.0-μF capacitors is connected in parallel across a 24-V potential
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 281) ______
 282) ______
 283) ______
 284) ______
 284) ______
 284) ______
 284) ______
 285) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) ______
 286) _______
 286) ______
 286) ______</li

A) 1.7 mJ	B) 4.8 mJ	C) 2.1 mJ	D) 7.1 mJ
-----------	-----------	-----------	-----------

- 285) What resistance must be connected in parallel with a 633- Ω resistor to produce an 285) _ equivalent resistance of 205 Ω ?
- 286) What is the equivalent resistance between points A and B of the network shown in the figure?

MULTIPLE CHOICE. Choo 287) A combination of a 3.0-Ω resistor. WI	ose the one alternative that $[1, 2, 0, 0]$ resistor in series winat is the equivalent resistance.	best completes the statemen th 4.0-Ω resistor is connec ance of this system?	nt or answers the question ted in parallel with a	. 287)
Α) 9.0 Ω	Β) 4.0 Ω	C) 2.0 Ω	D) 3.0 Ω	
288) Two 4.0-Ω resistor: 3.0 Ω. What is the	s are connected in parallel, e equivalent resistance of tl	and this combination is c nis system?	onnected in series with	288)
Α) 1.2 Ω	Β) 7.0 Ω	C) 5.0 Ω	D) 11 Ω	
289) A 2.0-Ω resistor is What is the equiva	in series with a parallel cor lent resistance of this syste	nbination of 4.0-Ω, 6.0-Ω, m?	and 12- Ω resistors.	289)
Α) 2.7 Ω	Β) 4.0 Ω	C) 24 Ω	D) 1.8 Ω	
290) What is the equiva $R_1 = 10 \ \Omega$	lent resistance in the circui	t shown in the figure?		290)
$V = \begin{bmatrix} R_2 = \frac{2}{20 \Omega} \\ R_4 = 30 \Omega \end{bmatrix}$	$R_3 = 20 \Omega$			
Α) 50 Ω	Β) 35 Ω	C) 80 Ω	D) 55 Ω	
291) Each of the resistor resistance between <i>a</i>	rs shown in the figure has a points <i>a</i> and <i>b</i> of this com	a resistance of ^{400.0} Ω. W bination?	hat is the equivalent	291)
b ()	B) 1000 Ω	C) 400.0 Ω	D) 1200 Ω	
292) The resistors in the equivalent resistan	circuit shown in the figure ce between points a and b	e each have a resistance of of this combination?	600Ω . What is the	292)

293) .

293) Three 2.0-Ω resistors are connected to form the sides of an equilateral triangle ABC as shown in the figure. What is the equivalent resistance between any two points, AB, BC, or AC, of this circuit?

295) A number of resistors are connected across points A and B as shown in the figure. What is the equivalent resistance between points A and B?

296) ____

295) _

296) A number of resistors are connected across points A and B as shown in the figure. What is the equivalent resistance between points A and B?

297) What is the equivalent resistance of the circuit shown in the figure? The battery is ideal and all resistances are accurate to 3 significant figures.

298) Three light bulbs, A, B, and C, have electrical ratings as follows:

Bulb A: 96.0 W, 1.70 A

Bulb B: 80.0 V, 205 W

Bulb C: 120 V, 0.400 A

These three bulbs are connected in a circuit across a 150-V voltage power source, as shown in the figure. Assume that the filament resistances of the light bulbs are constant and independent of operating conditions. What is the equivalent resistance of this combination of bulbs between the terminals of the power source?

(ØA 				
Α) 364 Ω	B) 86.2 Ω	C) 61.5 Ω	D) 74.0 Ω	Ε) 15.3 Ω

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 299) A heating element having a resistance (at its operating temperature) of 421 Ω is connected to a battery having an emf of 781 V and unknown internal resistance. It is found that heat energy is being generated in the resistance of the heating element at a rate of 66.0 W. What is the rate at which heat energy is being generated in the internal resistance of the battery?
 - 300) When an external resistor of resistance $R_1 = 14 \Omega$ is connected across the terminals of a 300) ______ battery, a current of 6.0 A flows through the resistor. When a different external resistor of resistance $R_2 = 64.4 \Omega$ is connected instead, the current is 2.0 A. Calculate (a) the emf of the battery and (b) the internal resistance of the battery.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

301) A battery you buy a	t the store has an intern	al emf of 3.0 V. If it has a	n internal resistance		
of 16.0Ω , what current will this battery put out if it is short-circuited?					
A) 140 A	B) 48 A	C) 5.3 A	D) 0.19 A		

302) A 4.0-Ω resistor is connected across the terminals of a battery having an internal emf of 10 V. If 0.50-A current flows, what is the internal resistance of the battery? A) 24.0 Ω B) 10.8 Ω C) 16 Ω D) 20 Ω

303) A battery has an emf ε = 26.0 V and an internal resistance *r* = 7.0 Ω , as shown in the figure. A current of 8.2 A is drawn from the battery when a resistor *R* is connected across the terminals *a* and *b*. The power dissipated by the resistor *R* is closest to

301) ____

302) ____

297) _

298) ____

299) _

A) 96 W.	B) -140 W.	C) -22 W.	D) -260 W.	E) 210 W.
/	,	,		,

304) A battery has an emf ε = 93.0 V and an internal resistance r = 5.0 Ω , as shown in the figure. When 304) _____ the terminal voltage V_{ab} is equal to 53.9 V, the current through the battery, including its direction, is closest to

A) 7.8 A, from *a* to *b*.
B) 11 A, from *a* to *b*.
C) 11 A, from *b* to *a*.
D) 7.8 A, from *b* to *a*.
E) 19 A, from *b* to *a*.

305) A battery has an emf ε = 12 V and an internal resistance r = 2.0 Ω , as shown in the figure. When a 305) _____ current of 6.0 A is drawn from the battery, the terminal voltage of the battery V_{ab} is closest to

306) A battery has an emf ε = 12 V and an internal resistance r = 2.0 Ω , as shown in the figure. When a 306) _____ 3.0- Ω cable is connected across the battery terminals a and b, the rate at which chemical energy in the battery is depleted is closest to

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

307) A circuit contains two batteries and a 2.0- Ω resistor as shown in the figure. The emfs and internal resistances of these batteries are indicated in the figure, and all numbers are accurate to two significant figures. What are the terminal voltages of (a) the 6.0-V battery and (b) the 12-V battery?

- 308) Three resistors of 12 Ω , 12 Ω , and 6.0 Ω are connected together, and an ideal 12-V battery 308) _ is connected across the combination. What is the current from the battery if they are connected (a) in series or (b) in parallel?
- 309) Two resistors with resistances of 5.0Ω and 9.0Ω are connected in parallel. A $4.0-\Omega$ is connected resistor is then connected in series with this parallel combination. An ideal 6.0-V battery then across the

307) _

series-pa 309) rallel combinat ion. What is the current through (a) the $4.0-\Omega$ resistor and (b) the 5.0- Ω resistor?

310) For the circuit shown in the figure, the battery is ideal and all quantities are accurate to 3 two significant figures. Find the current through (a) the 1.0- Ω resistor, (b) the 3.0- Ω resistor, and (c) the 4.0- Ω resistor.

- 311) Two 100-W light bulbs of fixed resistance are to be connected to an ideal 120-V source.
 311) ______
 What are the current, potential difference, and dissipated power for each bulb when they are connected
 - (a) in parallel (the normal arrangement)?
 - (b) in series?

312) For the circuit shown in the figure, $R_1 = 5.6 \Omega$, $R_2 = 5.6 \Omega$, $R_3 = 14 \Omega$, and $\varepsilon = 6.0 V$, and 312) _____

the battery is ideal.

- (a) What is the equivalent resistance across the battery?
- (b) Find the current through each resistor.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.313) A 22-A current flows into a parallel combination of $4.0-\Omega$, $6.0-\Omega$, and $12-\Omega$ resistors. What313) _____current flows through the $12-\Omega$ resistor?A) 11 AB) 7.3 AC) 3.7 AD) 18 A314) A 6.0- Ω and a $12-\Omega$ resistor are connected in parallel across an ideal 36-V battery. What power314) ______is dissipated by the $6.0-\Omega$ resistor?A) 490 WB) 48 WC) 220 WD) 24 W

315) The following three appliances are connected in parallel across an ideal 120-V dc power source:what curren1200-W toaster, 650-W coffee pot, and 600-W microwave.If all were operated at the same timetotal t

310) _____

would they draw from the	315)					
source:	A) 4.0 A	B) 5.0 A	C) 2	0 A	D) 10 A	
316)) A certain 20-A cir number of 100-W tripping this circu	cuit breaker trips whe light bulbs you can cc it breaker?	n the current in it nnect in parallel i	equals 20 A. What n an ideal 120-V do	is the maximum c circuit without	316)
	A) 23	B) 11	C) 1	7	D) 27	
317)) A15-Ω resistor is o connected in serie the 15-Ω resistor?	connected in parallel v s with an ideal 9.0-V b	vith a 30-Ω resisto pattery and a 20-Ω	or. If this combina resistor, what is th	tion is now ne current through	317)
	A) 0.13 A	B) 0.26 A	C) 0	.20 A	D) 0.10 A	
318)) Three resistors of combination is no the current throug	resistances 4.0 Ω , 6.0 Ω w connected in series gh the 10- Ω resistor?	Ω , and 10 Ω are co with an ideal 12-V	onnected in parallel / battery and a 2.0-	I. If this Ω resistor, what is	318)
	A) 0.59 A	B) 11 A	C) 1	6 A	D) 2.7 A	
319)	Two resistors hav then connected in across the series-p A) 0.53 A	ing resistances of 5.0 G series with the paralle parallel combination. B) 0.35 A	Ω and 9.0 Ω are co el combination. A What is the curre C) 0.83 A	nnected in parallel n ideal 6.0-V batter nt through the 9.0- D) 0.30 A	. A 4.0- Ω resistor is y is then connected Ω resistor? E) 0.67 A	319)
320)) A 3.0-Ω resistor is connected in serie battery. How m A) 12 W	s connected in parallel s with a 4.0-Ω resistor uch power is dissipate B) 5.3 W	with a 6.0-Ω resis The resistors and d in the 3.0-Ω resi C) 6	tor. This combina re connected across stor? .0 W	ation is then an ideal 12-volt D) 2.7 W	320)
321)) Four resistors hav ideal dc voltage se voltage source?	ing resistances of 20 Ω ource. If the current th	Ω , 40 Ω, 60 Ω, and rough this circuit	80 Ω are connected is 0.50 A, what is t	d in series across an he voltage of the	321)
	A) 60 V	B) 40 V	C) 80 V	D) 100 V	E) 20 V	
322)) Four resistors hav ideal 50-V dc sour	ing resistances of 20 Ω ce. What is the curren	Ω , 40 Ω, 60 Ω, and t through each res	80 Ω are connected sistor?	l in series across an	322)
	A) 4.0 A	B) 2.0 A	C) 0.25 A	D) 0.50 A	E) 0.75 A	
323)) If $V = 40$ V and the $R_1 = 10 \Omega$ $V = \frac{R_2}{20 \Omega}$ $R_4 = 30 \Omega$ A) 6.7 V	e battery is ideal, what $R_3 = 20 \Omega$ B) 10 V	t is the potential d	ifference across R ₁	in the figure?	323)
	A) 0.7 V	D) 10 V	C) 0	.U V		

324) If V = 20 V and the battery is ideal, what is the current through R₃ in the figure?

329) What is the magnitude of the potential difference between points B and C for the circuit shown 329) - in the figure? The battery is ideal, and all the numbers are accurate to two significant figures.

332) What is the potential drop from point A to point B for the circuit shown in the figure? The 332) _____ battery is ideal, and all the numbers are accurate to two significant figures.

333) A 4.0- Ω resistor is connected to a 12- Ω resistor and this combination is connected to an ideal dc power supply with voltage *V* as shown in the figure. If the total current in this circuit is *I* = 2.0 A, what is the value of voltage *V*?

334) A 4.0-Ω resistor is connected with a 12-Ω resistor and both of these are connected across an ideal 334) ______ dc power supply with voltage *V* as shown in the figure. If the total current in this circuit is I = 2.0 A, what is the current through the 4.0-Ω resistor?

335) A 4.0-Ω resistor is connected with a 12-Ω resistor and this combination is connected across an ideal dc power supply with V = 6.0 V, as shown in the figure. When a total current *I* flows from the power supply, what is the current through the 12-Ω resistor?

336) Four resistors are connected across an ideal dc battery with voltage *V*, as shown in the figure. If the total current in this circuit is *I* = 1 A, what is the value of the voltage *V*?

337) Four resistors are connected across an ideal dc battery with voltage *V* as shown in the figure. Assume that all quantities shown are accurate to two significant figures. If the total current through this circuit is I = 2.0 A, what is the current through the 4.0- Ω resistor?

337) _

338) An ideal 100-V dc battery is applied across a series combination of four resistors having resistances of 20 Ω, 40 Ω, 60 Ω, and 80 Ω. What is the potential difference across the 40-Ω resistor?
A) 100 V
B) 20 V
C) 40 V
D) 60 V
E) 80 V

339) Four resistors are connected across an ideal dc source of V = 8.0 V, as shown in the figure. 339) _ Assume all resistances shown are accurate to two significant figures. What is the current through the 9.0-Ω resistor?

340) Three resistors with resistances of 2.0 Ω , 6.0 Ω , and 12 Ω are connected across an ideal dc voltage source *V* as shown in the figure. If the total current through the circuit is *I* = 2.0 A, what is the applied voltage *V*?

341) Three resistors with resistances of 2.0 Ω , 6.0 Ω , and 12 Ω are connected across an ideal dc voltage 341) ______ source *V* = 2.0 V, as shown in the figure. What is the total current *I* in this circuit?

342) Three resistors with resistances of 2.0 Ω , 6.0 Ω , and 12 Ω are connected across an ideal dc voltage 342) _ source *V*, as shown in the figure. If the total current in the circuit is *I* = 5.0 A, what is the current through the 12- Ω resistor?

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

343) For the circuit shown in the figure, the ideal battery has an emf $\varepsilon = 20$ V. The four resistors have resistances of $R_1 = 13\Omega$, $R_2 = 16\Omega$, $R_3 = 20\Omega$, and $R_4 = 13\Omega$. Calculate the rate at which heat is being generated in the resistor R_4 .

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

344) A portion of a circuit is shown in the figure, and the batteries are ideal. What is the potential $M_{A} = 344$ difference $V_{A} - V_{B}$ if I = 5.0 A?

- 346) For the circuit shown in the figure, the current in the 8.0-Ω resistor is 0.50A. What is the current 346) ______ in the 2.0-Ω resistor? All the numbers shown are accurate to two significant figures.

347) For the circuit shown in the figure, what is the power dissipated in the 2.0- Ω resistor? All the 347) _____ numbers shown are accurate to three significant figures.

 4.0Ω

 4.0Ω

5.0 Ω

348)

 $I_1 = 4.0 \, \text{A}$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

348) For the circuit shown in the figure, calculate the emf's ε_1 and ε_3 , assuming that the batteries are ideal. Note that two currents are shown.

350) In the circuit shown in the figure, $R_1 = 60 \Omega$, $R_2 = 120 \Omega$, $R_3 = 180 \Omega$, $V_1 = 3.0 V$, $V_2 = 6.0 V$, and 350) _____ the batteries are both ideal. What is the current through R_1 ?

351) In the circuit shown in the figure, $R_1 = 10 \Omega$, $R_2 = 12 \Omega$, $R_3 = 20 \Omega$, $V_1 = 1.0 V$, $V_2 = 7.0 V$, and the 351) ______ batteries are both ideal. What is the current through R_1 ?

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

352) For the circuit shown in the figure, $R_1 = 18 \Omega$, $R_2 = 44 \Omega$, $R_3 = 33 \Omega$, $R_4 = 14 \Omega$, $R_5 = 12 \Omega$, 352) _________ $V_1 = 18 V$, $V_2 = 12 V$, and the batteries are ideal. Determine I_1 and I_2 .

353) For the circuit shown in the figure, $R_1 = 50 \Omega$, $R_2 = 20 \Omega$, $R_3 = 35 \Omega$, $R_4 = 10 \Omega$, $R_5 = 68 \Omega$, (b) the potential $I_1 = 0.111 \text{ A}$, $I_2 = 0.142 \text{ A}$, and the batteries are ideal. (a) Determine V_1 and V_2 . (b) the potential Whadifference t is across R_4 ?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

354) Determine the current in the 7.0-Ω resistor for the circuit shown in the figure. Assume that the 354) ______ batteries are ideal and that all numbers are accurate to two significant figures.

356) Determine the current in the 4.0-Ω resistor for the circuit shown in the figure. Assume that the 356) ______ batteries are ideal and that all numbers are accurate to two significant figures.

357) Determine the current in the 12- Ω resistor for the circuit shown in the figure assuming that the 357) _____ batteries are ideal.

358) Determine the current in the 18- Ω resistor for the circuit shown in the figure assuming that the batteries

359) For the circuit shown in the figure, both batteries are ideal. What current flows in the solid wire 359) _____ connecting the upper left and lower left corners of the circuit?

6.0 V 9.0 VA) 0.75 A B) 0.50 A C) 0.25 A D) 1.0 A

362) A multiloop circuit is shown in the figure. Find the emf ε_1 if the batteries are ideal. (It is not necessary to solve the entire circuit.)

363) A multiloop circuit is shown in the figure, but some quantities are not labeled. Find the emf ε if 363) _____ the batteries are ideal. (It is not necessary to solve the entire circuit.)

365) A multiloop circuit is shown in the figure, but some quantities are not labeled. Find the current 365) _ *I*₂ if the batteries are ideal. (It is not necessary to solve the entire circuit.)

366) A 4.0- μ F uncharged capacitor is connected in series with a 2.0-kΩ resistor, an ideal 20-V dc 366) _____ source, and an open switch. If the switch is closed at time *t* = 0.0 s, what is the charge on the capacitor at *t* = 9.0 ms?

A) 0 C

B) 96% of the maximum charge

- C) 37% of the minimum charge
- D) 68% of the minimum charge
- E) 68% of the maximum charge

367) A 2.0-µF capacitor t	hat is initially uncharged	l is charged through a 50-l	$k\Omega$ resistor. How long	367)
does it take for the o	capacitor to reach 90% of	its full charge?		
A) 2.2 s	B) 0.90 s	C) 0.23 s	D) 2.3 s	

368) A fully charged 37- μ F capacitor is discharged through a 1.0-k Ω resistor. If the voltage across the capa citor is

362)

reduced	368)					
to 7.6						_
volts						
after just						
20 ms,						
what						
was the						
original						
potential						
across						
the						
capacitor						
?						
	A) 8.0 V	B) 16 V	C) 9.0 V	D) 11 V	E) 13 V	

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 369) When an initially uncharged capacitor is charged through a 25-kΩ resistor by a 75-V dc 369) ______ ideal power source, it takes 0.23 ms for the capacitor to reach 50% of its maximum charge? What is the capacitance of this capacitor?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

370) A 2.0-µF capacitor i	s charged to 12 V and th	nen discharged through a 4	.0-M Ω resistor.	How long	370)	
will it take for the v	oltage across the capaci	tor to drop to 3.0 V?				
A) 11 s	B) 22 s	() 24 s	D) 80 s			

371) For the circuit shown in the figure, V = 30 V, C = 60 μF, R = 0.40 MΩ, and the battery is ideal. 371) _____ Initially the switch S is open and the capacitor is uncharged. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor 8.0 s after closing the switch?

372) For the circuit shown in the figure, V = 60 V, C = 60 μF, R = 0.60 MΩ, and the battery is ideal. 372) _____ Initially the switch S is open and the capacitor is uncharged. The switch is then closed at time t = 0.00 s. What is the potential difference across the resistor 20 s after closing the switch?

373) For the circuit shown in the figure, V = 20 V, $C = 90 \mu$ F, R = 0.80 M Ω , and the battery is ideal. Initially the switch S is open and the capacitor is uncharged. The switch is then closed at time t = 0.00 s. At a given instant after closing the switch, the potential difference across the capacitor is twice the potential difference across the resistor. At that instant, what is the charge on the capacitor?

$11 100 \mu c$ $11200 \mu c$ $11200 \mu c$ $11100 \mu c$ $11100 \mu c$	A) 900 μC	B) 1000 μC	C) 1200 µC	D) 670 μC	E) 450 j
--	-----------	------------	------------	-----------	----------

374) For the circuit shown in the figure, $C = 12 \mu$ F and $R = 8.5 M\Omega$. Initially the switch S is open with 374) ______ the capacitor charged to a voltage of 80 V. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor, when the current in the circuit is 3.3 μ A?

375) For the circuit shown in the figure, C = 77 μF and R = 5.4 MΩ. Initially the switch S is open with the capacitor charged to a voltage of 80 V. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor 40 s after closing the switch?

376) A 1.0-μF capacitor is charged until it acquires a potential difference of ^{200.0 V} across its plates, and then the emf source is removed. If the capacitor is then discharged through a ^{100.0-kΩ} resistance, what is the voltage drop across the capacitor ^{7.0 ms} after beginning the discharge? A) 14 V B) 210 V C) -15 V D) 190 V

377) _

378) ____

379) _

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

377) The capacitor shown in the circuit in the figure is initially uncharged when the switch S is suddenly closed, and the battery is ideal. After one time constant has gone by, find (a) the current through the resistor and (b) the charge on the capacitor. Assume that the numbers shown are all accurate to two significant figures.

- 378) A circuit contains a 2.0-MΩ resistor in series with an uncharged capacitor. When this combination is connected across an ideal battery, the capacitor reaches 25% of its maximum charge in 1.5 s. What is its capacitance?
- 379) A series circuit consists of a 2.5-μF capacitor, a 7.6-MΩ resistor, and an ideal 6.0-V dc power source.
 - (a) What is the time constant for charging the capacitor?
 - (b) What is the potential difference across the capacitor 25 s after charging begins?
- 380) A resistor with a resistance of 360 Ω is in a series circuit with a capacitor of capacitance 380) _____ 7.3 × 10⁻⁶ F. What capacitance must be placed in parallel with the original capacitance to change the capacitive time constant of the combination to three times its original value?
- 381) In the circuit shown in the figure, all the capacitors are initially uncharged when the switch S is suddenly closed, and the battery is ideal. Find (a) the maximum reading of the ammeter and (b) the maximum charge on the 5.00-μF capacitor.

MULTIPLE CHC	ICE. Choose the o	ne alternative that	t best completes the stater	ment or answers the question.	
382) A galva	nometer has an int	ernal resistance o	f 100 Ω and deflects full-	scale at 2.00 mA. What size	e 382)
resistor	should be added t	o it to convert it to	o a milliammeter capable	of reading up to 4.00 mA?	,
A) 1(Ω Ω in series		B) 50.0 O in pa	rallel	
C) 1(0Ω in parallel		$D) 50.0 \Omega in cor$	rioc	
C) I(0 22 in parallel		D) 50.0 22 III sei	nes	
383) A galva	nometer has a coil	with a resistance	of 24.0 Ω , and a current	of 180 µA causes full-scale	383)
deflecti	on. If the galvano	meter is to be use	d to construct an ammet	er that deflects full scale for	
10.0 A.	what shunt resistor	r is required?			
A) 42	3 110	B) 234 µO	C) 342 µO	D) 432 µO	
	0 µ22	<i>b)</i> 201 µ22	C) 012 µ22	<i>D</i>) 102 µ22	
SHORT ANSWEI	R. Write the word	or phrase that bes	t completes each statemer	nt or answers the question.	
384) A galva	nometer that gives	a full-scale defle	ction when 150 µA runs	through it is used to 384)	
make a	n ammeter that rea	ds a maximum of	1.00 A. To do this, a 3.3-	m Ω shunt was	
require	d. What is the resis	tance of just the g	alvanometer?		
MULTIPLE CHC	ICE. Choose the o	ne alternative that	t best completes the stater	nent or answers the question.	•
385) A galva	nometer has an int	ernal resistance o	f 100 Ω and deflects full-	scale at 2.00 mA. What size	e 385)
resistor	should be added to	o it to convert it to	o a millivoltmeter capabl	e of reading up to 400 mV?	
A) 10	0Ω in series		B) 50.0 Ω in sei	ries	
C) 50	$0.0 \ \Omega$ in parallel		D) 100 Ω in par	callel	
,	1		, I		
386) A galva	nometer with a coi	l resistance of 40.	0Ω deflects full scale for	a current of 2.0 mA. What	386)
series r	esistance should be	used with this ga	lvanometer in order to c	construct a voltmeter that	,
deflects	full scale for 50 V?	,			
A) 29	kO	B) 27 kO	C) 31 kO	D) 25 kO	
11) 2.	<u>N22</u>	<i>D</i>) <i>Z</i> / R22	C) 01 K22	D) 20 $R22$	
387) A galva	nometer with a coi	l resistance of 80	Ω deflects full-scale for a	current of 2.0 mA. What	387)
series r	esistance is require	d to convert it to a	a voltmeter reading full s	scale for 200 V.	,
A) 10	$10 \text{ m}\Omega$ B) 1	100 kΩ C	C) 13 MΩ D) 0.8	80 mΩ E) 250 kΩ	
,					
SHORT ANSWEI	R. Write the word	or phrase that bes	t completes each statemer	nt or answers the question.	
388) You ha	ve available a galva	nometer that give	es a full-scale deflection f	for a 333- μ A current 388)	
and has	a coil resistance of	533 Ω.			
(a) What	at shunt resistance i	is needed to conv	ert this galvanometer to a	a 5.0-A ammeter?	
(b) Wh	at series resistance	is needed to conv	ert this galvanometer to a	a 5.0-V voltmeter?	
(-) · ·					
389) A prote	$n \mod x$ moving at 5.0 x	104 m/s horizont	ally enters a region when	re a magnetic field of 389)	
0.12 T j	a procent directed	vortically downw	and What magnitude for	rea acts on the	
0.12 1 1	due to this field?	vertically downw	aru. What magnitude for	ice acts off the	
proton	10^{10} 10^{10}				
(e = 1.60)) × 10-19 C)				
390) A geor	hysicist maggures f	he magnetic force	on a proton that is movi	ing vertically mag	and direction
dourne	ard at a point 1 000	km/c at the act	's equator. At that location	on the earth's	of the force she
uownw		KIII/S at the earth	is equator. At that location		urill management
magne	ic magnetic field is	norizontal and h	as a strength of 0.40×10^{-1}	⁻⁺ I. What are the de	will measure?

(e = 1.60 390) × 10-19 C)	
 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the q ³⁹¹) An electron moves with a speed of 3.0 × 10⁴ m/s perpendicular to a uniform magnetic fiel magnitude 0.40 T. What is the magnitude of the magnetic force on the electron? (<i>e</i> = 1.60 C) A) 5 × 10⁻²⁰ N B) 4.8 × 10⁻¹⁴ N C) zero D) 1.9 × 10⁻¹⁵ N E) 2.2 × 10⁻²⁴ N 	uestion. ld of 391)) × 10-19
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the quest 392) An electron traveling toward the magnetic north with speed 400 km/s enters a region where the earth's magnetic field has the magnitude 5.0×10^{-5} T and is directed downward at 45° below horizontal. What magnitude magnetic force acts on the electron? ($e = 1.60 \times 10^{-19}$ C)	s tion. 392)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the q393) A proton travels at a speed of 5.0×10^7 m/s through a 1.0-T magnetic field. What is themagnitude of the magnetic force on the proton if the angle between the proton's velocitymagnetic field vector is 30° ? ($e = 1.60 \times 10^{-19}$ C)A) 2.0×10^{-12} NB) 4.0×10^{-14} NC) 2.0×10^{-14} ND) 4.0×10^{-14} N	uestion. 393) and the -12 _N
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the ques 394) A proton, with mass 1.67×10^{-27} kg and charge $+1.6 \times 10^{-19}$ C, is sent with velocity 6.2×10^4 m/s in the + <i>x</i> direction into a region where there is a uniform electric field of magnitude 740 V/m in the + <i>y</i> direction. What must be the magnitude and direction of the uniform magnetic field in the region if the proton is to pass through undeflected? Assume that the magnetic field has no <i>x</i> component and neglect gravitational effects.	stion. 394)
 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the q 395) A proton is projected with a velocity of 7.0 km/s into a magnetic field of 0.60 T perpendic the motion of the proton. What is the magnitude of the magnetic force that acts on the prosent the proton of the proton. What is the magnitude of the magnetic force that acts on the proton of N = 1.60 × 10⁻¹⁹ C) A) 0 N B) 3.4 × 10⁻¹⁶ N C) 6.7 × 10⁻¹⁶ N D) 4.2 × 10⁻¹⁶ N E) 13 × 10⁻¹⁶ N 	uestion. ular to 395) oton? (<i>e</i>
 396) A proton moving eastward with a velocity of 5.0 km/s enters a magnetic field of 0.20 T pc northward. What are the magnitude and direction of the force that the magnetic field exe the proton? (<i>e</i> = 1.60 × 10⁻¹⁹ C) A) 1.1 × 10⁻¹⁶ N eastwards B) 0 N C) 4.4 × 10⁻¹⁶ N westwards D) 1.6 × 10⁻¹⁶ N upwards 	pinting 396) erts on

E) 1.6 \times 10⁻¹⁶ N downwards

397) A proton moving with a velocity of 4.0×10^4 m/s enters a magnetic field of 0.20 T. If the angle 397) _ between the velocity of the proton and the direction of the magnetic field is 60°, what is the magnitude of the magnetic force on the proton? ($e = 1.60 \times 10^{-19}$ C) A) 2.2 × 10⁻¹⁵ N B) 1.8 × 10-15 N C) 3.3 × 10-15 N D) 0.60 × 10-15 N E) 1.1 × 10-15 N 398) A proton moving with a velocity of 4.0×10^4 m/s along the +y-axis enters a magnetic field of 0.20 398) ____ T directed towards the *-x*-axis. What is the magnitude of the magnetic force acting on the proton? $(e = 1.60 \times 10^{-19} \text{ C})$ A) 8.0 × 10-15 N B) 2.6 × 10-15 N C) 1.3 × 10-15 N D) 3.9 × 10-15 N E) 0 N 399) ___ 399) An electron moves with a speed of 4.0×10^4 m/s perpendicular to a uniform magnetic field of 0.50 T. What is the magnitude of the magnetic force on the electron? ($e = 1.60 \times 10^{-19}$ C) A) 5.1 × 10-14 N B) 3.2 × 10-15 N C) 4.4 × 10-24 N D) 0 N E) 5 × 10-20 N 400) An electron moves with a speed of 8.0×10^6 m/s along the +*x*-axis. It enters a region where 400) _____ there is a magnetic field of 2.5 T, directed at an angle of 60° to the +x-axis and lying in the *xy*-plane. Calculate the magnitude of the magnetic force on the electron. ($e = 1.60 \times 10^{-19}$ C) A) 3.2 × 10-10 N B) 0 N C) 2.8 × 10-12 N D) 2.8 × 10-10 N E) 3.2 × 10-12 N 401) An electron moves with a speed of 8.0×10^6 m/s along the +*x*-axis. It enters a region where 401) _____ there is a magnetic field of 2.5 T, directed at an angle of 60° to the +*x*-axis and lying in the *xy*-plane. Calculate the magnitude of the acceleration of the electron. ($e = 1.60 \times 10^{-19}$ C, $m_{e1} =$ 9.11×10^{-31} kg) A) $3.0 \times 10^{18} \text{ m/s}^2$ B) 1.3 × 10-18 m/s² C) 0 m/s^2 D) $3.0 \times 10^{-18} \text{ m/s}^2$ E) $1.3 \times 10^{18} \text{ m/s}^2$ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

402) A proton is accelerated from rest through 0.50 kV. It then enters a uniform magnetic(a) t is the radiusfield of 0.30 T that is oriented perpendicular to its direction of motion.Whaof the path the

402) proton follows in the magnetic field? (b) How long does it take the proton to make one complete circle in the magnetic field?.

⁴⁰³⁾ In the figure, a small particle of charge -4.1 x 10^{-6} C and mass $m = 3.1 \times 10^{-12}$ kg has speed $v_0 = 5.5 \times 10^3$ m/s as it enters a region of uniform magnetic field. The particle is initially traveling perpendicular to the magnetic field and is observed to travel in the semicircular path shown with radius R = 5.0 cm. Find the magnitude and direction of the magnetic field in the region.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 404) A proton having a speed of 3.0 × 10⁶ m/s in a direction perpendicular to a uniform magnetic field 404) – moves in a circle of radius 0.20 m within the field. What is the magnitude of the magnetic field?

 $(e = 1.60 \times 10^{-19} \text{ C}, m_{\text{proton}} = 1.67 \times 10^{-27} \text{ kg})$

A) 0.24 T	B) 0.080 T	C) 0.16 T	D) 0.36 T	E) 0.32 T
-----------	------------	-----------	-----------	-----------

405) An electron moving perpendicular to a uniform magnetic field of 3.2×10^{-2} T moves in a circle of 405) ______ radius 0.40 cm. How fast is this electron moving? ($e = 1.60 \times 10^{-19}$ C, $m_{electron} = 9.11 \times 10^{-31}$ kg)

A) 1.9 × 106 m/s B) 0.80 × 107 m/s C) 2.2 × 107 m/s D) 1.9 × 107 m/s E) 3.0 × 107 m/s

406) An electron moving perpendicular to a uniform magnetic field of 0.22 T moves in a circle with a speed of 1.5×10^7 m/s. What is the radius of the circle? ($e = 1.60 \times 10^{-19}$ C, $m_{electron} = 9.11 \times 10^{-31}$ kg)

403) _____

	A) 2.2 mm	B) 0.39 mm	C) 1.5 mm	D) 0.22 mm	E) 3.9 mm	
	407) An electron is according where a uniform 4 the radius of the p	elerated from rest the 1.0-mT magnetic field path this electron will	cough a potential di d is perpendicular to l follow in the magr	fference of 3.75 kV. I to the velocity of the metic field. ($e = 1.60 \times$	t enters a region electron. Calculate 10 ⁻¹⁹ C, <i>m</i> electron	407)
	$= 9.11 \times 10^{-31} \text{ kg}$	B) 2.2 cm	() 5.2 cm	D) 1.2 cm	F) 3.2 cm	
	A) 4.2 cm	<i>D)</i> 2.2 Cm	C) 5.2 cm	<i>D</i>) 1.2 cm	E) 5.2 Cm	
	408) A doubly charged perpendicular to t the mass of this io A) 3.3×10^{-27} kg	ion with speed 6.9 × he field. Once in the n? ($e = 1.60 \times 10^{-19}$ C g B) 6.7 × 10	² 10 ⁶ m/s enters a ur field, it moves in a ⁽⁾ - ²⁷ kg C) 11	hiform 0.80-T magne circular arc of radius L × 10 ⁻²⁷ kg	tic field, traveling 5 30 cm. What is D) 8.2 × 10 ⁻²⁷ kg	408)
	409) A proton, starting into a magnetic fie resulting orbit? (e	from rest, accelerate eld of 0.040 T at a rig = 1.60 × 10 ⁻¹⁹ C, m _{p1}	s through a potenti ht angle to the field oton = 1.67 × 10-27 1	al difference of 1.0 k . What is the radius kg)	V and then moves s of the proton's	409)
	A) 0.14 m	B) 0.11 m	C) 0.	080 m	D) 0.17 m	
	410) A charged particle angle to its motion is the magnitude of	e of mass 0.0010 kg is n. If the particle mov of the charge on the p	s subjected to a ^{3.0–} es in a circle of radio particle?	T _{magnetic} field wh us ^{0.10 m} at a speed	ich acts at a right of ^{2.0} m/s, what	410)
	A) 150 C	B) 10,000 C	C C) 0.	00010 C	D) 0.0067 C	
	411) Alpha particles, ea uniform 0.80-T ma velocity of the par the final orbit? (e = A) 0.33 μs	ach having a charge o agnetic field to a fina ticles. How long doe = 1.60 × 10 ⁻¹⁹ C) B) 0.25 μs	of +2 <i>e</i> and a mass of l orbit radius of 0.30 es it take an alpha pa C) 0.49 μs	⁵ 6.64 ×10 ⁻²⁷ kg, are) m. The field is perp article to make one c D) 0.15 μs	accelerated in a pendicular to the omplete circle in Ε) 0.40 μs	411)
	412) Alpha particles, ea uniform 0.50 T m the velocity of the $eV = 1.60 \times 10^{-19}$ J A) 0.92 MeV	ach having a charge o nagnetic field to a fir particles. What is th , <i>e</i> = 1.60 × 10 ⁻¹⁹ C) B) 1.4 MeV	of +2 <i>e</i> and a mass of nal orbit radius of ⁰ e kinetic energy of a C) 1.6 MeV	6.64 ×10 ⁻²⁷ kg, are 30 m. The field is p an alpha particle in t D) 1.1 MeV	accelerated in a perpendicular to he final orbit? (1 E) 1.2 MeV	412)
SHO	RT ANSWER. Write the 413) A wire along the <i>z</i> and direction of the magnetic field point	he word or phrase th <i>z</i> -axis carries a currer ne force exerted on a nting in the - <i>x</i> direct	at best completes each nt of 2.7 A in the +z of 3.7-cm long length ion having a magni	ch statement or answ direction. Find the m of this wire by a uni tude 0.66 T.	e rs the question. agnitude 413) _ form	
	griete held por					
MUI	A 2.0-m straight w of 0.50 T. What is A) 0.15 N	ose the one alternative vire carrying a current s the magnitude of the B) zero	te that best complete that of 0.60 A is orient the magnetic force or C) 0.	s the statement or an ed parallel to a unifo n it? 60 N	swers the question. orm magnetic field D) 0.30 N	414)
	415) A straight wire ca uniform 0.30-T ma the wire.	rries a current of 10 a agnetic field. Find t	A at an angle of 30° he magnitude of the	with respect to the c e magnetic force on a	lirection of a a 0.50-m length of	415)
	A) 6.0 N	B) 3.0 N	C) 0.	75 N	D) 1.5 N	

416) What is the force per meter on a straight wire carrying 5.0 A when it is placed in a magnetic field of 0.020

T so that 4	416)				
the wire					_
makes an					
angle of					
27° with					
respect					
to the					
magnetic					
field					
lines.					
	A) 0.17 N/m	B) 0.26 N/m	C) 0.045 N/m	D) 0.022 N/m	

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & &$$

419) A straight wire that is 0.60 m and carrying a current of 2.0 A is placed at an angle with respect to the magnetic field of strength 0.30 T. If the wire experiences a force of magnitude 0.18 N, what angle does the wire make with respect to the magnetic field?						
A) 30°	B) 35°	C) 25°	D) 20°	E) 60°		
420) A straight wire is magnetic field of the wire?	s carrying a current strength 0.20 T. If t B) 1.6 m	of 2.0 A. It is placed a he wire experiences a	at an angle of 60° wi a force of 0.40 N, wh D) 1.0 m	th respect to a at is the length of E) 1.2 m	420)	
71) 1.0 m	<i>b</i>) 1.0 m	C) 1.4 m	<i>D</i>) 1.0 m	L) 1.2 m		
421) A straight 1.0-m long wire is carrying a current. The wire is placed perpendicular to a magnetic						
field of strength (0.20 T. If the wire ex	periences a force of (0.60 N, what is the c	urrent in the wire?		
A) 4.0 A	B) 3.0 A	C) 2.0 A	D) 5.0 A	E) 1.0 A		
422) A wire in the sha	pe of an "M" lies in	the plane of the pape	er. It carries a curren	t of 2.0 A, flowing	direc ured.	

422) A wire in the snape of an M lies in the plane of the paper. It carries a current of 2.0 A, flowing directured. from A to E, as shown in the figure. It is placed in a uniform magnetic field of 0.75 T in the same the plane, directed as shown on the right side of the figure. The figure indicates the dimensions of the wire. Note that AB is parallel to DE and to the baseline from which the magnetic field meas the

- A) 0.11 N perpendicular out of the page
- B) 0.11 N perpendicular into the page
- C) 0.20 N perpendicular into the page
- D) 0.20 N perpendicular out of the page
- E) 0.40 N perpendicular out of the page
- 423) A wire in the shape of an "M" lies in the plane of the paper. It carries a current of 2.0 A, flowing from A to E, as shown in the figure. It is placed in a uniform magnetic field of 0.65 T in the same plane, directed as shown on the right side of the figure. The figure indicates the dimensions of the wire. Note that AB is parallel to DE and to the baseline from which the magnetic field direction is measured. What are the magnitude and direction of the force acting on section BC of this wire?

424) A wire in the shape of an "M" lies in the plane of the paper. It carries a current of 2.0 A, flowing plan direct from A to E, as shown in the figure. It is placed in a uniform magnetic field of 0.55 T in the same e, ed as

_

A) 0.40 N perpendicular out of the page

- B) 0.20 N perpendicular out of the page
- C) 0.40 N perpendicular into the page
- D) 0.066 N perpendicular into the page
- E) 0.066 N perpendicular out of the page
- 425) A wire in the shape of an "M" lies in the plane of the paper. It carries a current of 2.0 A, flowing 425) _______ from A to E, as shown in the figure. It is placed in a uniform magnetic field of 0.75 T in the same plane, directed as shown on the right side of the figure. The figure indicates the dimensions of the wire. Note that AB is parallel to DE and to the baseline from which the magnetic field direction is measured. What are the magnitude and direction of the force acting on section DE of this wire?

426) A wire in the shape of an "M" lies in the plane of the paper. It carries a current of 2.0 A, flowing from A to E. It is placed in a uniform magnetic field of 0.65 T in the same plane, directed as shown on the right side of the figure. The figure indicates the dimensions of the wire. Note that AB is parallel to DE and to the baseline from which the magnetic field direction is measured. What are the magnitude and direction of the net force acting on this wire?

A) 0.40 N perpendicular out of the page

- B) 0.20 N perpendicular out of the page
- C) 0.080 N perpendicular into the page
- D) 0.40 N perpendicular into the page
- E) 0.080 N perpendicular out of the page

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

427) Two long parallel wires separated by 15 cm each carry 10 A in opposite directions. (μ_0 = (a) t magnetic $4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$) Whaforce per

length 427) acts on each of the wires? Is it attractive or repulsive ? (b) Find the magnitu de of the magnetic field midway between the two wires.

428) In the figure, a rectangular current loop is carrying current $I_1 = 8.0$ A, in the direction indicated, near a long wire carrying a current I_W . The long wire is parallel to the sides of the rectangle. The rectangle loop has length 0.80 m and its sides are 0.10 m and 0.70 m from the wire. If the net force on the loop is to have magnitude 5.5×10^{-6} N and is to be

428) ____

from the wire. If the net force on the loop is to have magnitude of a loop of and is to be directed towards the wire, what must be the magnitude and direction (from top to bottom or from bottom to top in the sketch) of the current I_W in the wire? ($\mu_0 = 4\pi \times$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

	429) Two parallel straigh	t wires are 7.0 cm apart a	nd 50 m long. Each one c	arries a 18-A current in the	429)	
	same direction. One	wire is securely anchored	l, and the other is attache	ed in the center to a		
	movable cart. If the	force needed to move the	wire when it is not attack	hed to the cart is		
negligible, with what magnitude force does the wire pull on the cart? (μ_0 = 4 π × 10 ⁻⁷ T · m/A)						
	A) 37 mN	B) 66 mN	C) 93 mN	D) 46 mN		

430) Two long parallel wires that are 0.30 m apart carry currents of 5.0 A and 8.0 A in the opposite 430) _____ direction. Find the magnitude of the force per unit length that each wire exerts on the other wire and indicate if the force is attractive or repulsive. ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

A) 3.4×10^{-5} N attractive B) 2.7×10^{-5} N attractive

C) 2.7×10^{-5} N repulsive

D) 7.2×10^{-5} N attractive E) 7.2×10^{-5} N repulsive 431) ____ 431) Two long parallel wires are 0.400 m apart and carry currents of 4.00 A and 6.00 A. What is the magnitude of the force per unit length that each wire exerts on the other wire? ($\mu_0 = 4\pi \times 10^{-7} \text{ T}$ · m/A) D) 38.0 µN/m A) 16.0 µN/m B) 5.00 μN/m C) 2.00 µN/m E) 12.0 µN/m SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 432) A flat circular coil has 250 identical loops of very thin wire. Each loop has an area of 0.12 432) ____ m² and carries 15 mA of current. This coil is placed in a magnetic field of 0.050 T oriented at 30° to the plane of the loop. What is the magnitude of the magnetic moment of the coil? 433) A flat coil containing 25 identical loops carries 6.4 A of current. When it is placed in a 433) _____ uniform magnetic field of 0.22 T that is oriented parallel to the plane of the coil, the magnetic torque on it is $3.7 \text{ N} \cdot \text{m}$. (a) What is the magnetic moment of the coil? (b) What is the area of each loop? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 434) What is the magnetic moment of a rectangular loop having 120 turns that carries 6.0 A if its 434) ____ dimensions are 4.0 cm × 8.0 cm? A) $0.23 \text{ A} \cdot \text{m}^2$ B) 23 A · m2 C) $2.3 \text{ A} \cdot \text{m}^2$ D) $_{230} A \cdot m^2$ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 435) In the figure, the rectangular loop is pivoted about one side (of length 0.060 m), that 435) ____ coincides with the *y*-axis. The end (length 0.020 m) of the loop that lies in the *xz*-plane makes an angle of 37° with the *x*-axis as shown. The loop carries a current of I = 69 A in the direction shown. (In the side of the loop that is along the y-axis the current is in the +y direction.) If there is a uniform magnetic field of magnitude 9.7 T in the -x direction, find the magnitude of the torque that this magnetic field exerts on the loop.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

436) A rigid rectangular loop, measuring 0.30 m by 0.40 m, carries a current of 5.5 A, as shown in the figure. A uniform external magnetic field of magnitude 2.9 T in the *-x* direction is present. Segment CD is in the *xz*-plane and forms a 35° angle with the *z*-axis, as shown. What is the magnitude of the torque that the magnetic field exerts on the loop?

437) A flat rectangular loop of wire is placed between the poles of a magnet, as shown in the figure. It 437) _____ has dimensions w = 0.60 m and L = 1.0 m, and carries a current I = 2.0 A in the direction shown. The magnetic field due to the magnet is uniform and of magnitude 0.80 T. The loop rotates in the magnetic field and at one point the plane of the loop makes a 30° angle with the field. At that instant, what is the magnitude of the torque acting on the wire due to the magnetic field?

438) A flat rectangular loop of wire is placed between the poles of a magnet, as shown in the figure. It has dimensions w = 0.60 m and L = 1.0 m, and carries a current I = 2.0 A in the direction shown. The magnetic field due to the magnet is uniform and of magnitude 0.80 T. The loop rotates in the magnetic field and at one point the plane of the loop is parallel to the field. At that instant, what is the magnitude of the torque acting on the wire due to the magnetic field?

439) A flat rectangular loop of wire is placed between the poles of a magnet, as shown in the figure. It has dimensions w = 0.60 m and L = 1.0 m, and carries a current I = 2.0 A in the direction shown. The magnetic field due to the magnet is uniform and of magnitude 0.80 T. The loop rotates in the magnetic field and at one point the plane of the loop is perpendicular to the field. At that instant, what is the magnitude of the torque acting on the wire due to the magnetic field?

439)

438) _

Ν

440) A flat circular coil of wire having 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is 440) ____ placed in a magnetic field of ^{0.80 T} with the plane of the coil making an angle of 30° with the magnetic field. What is the magnitude of the magnetic torque on the coil? A) 0.087 N · m B) 0.46 N · m C) 0.10 N · m D) 0.33 N · m E) 0.17 N · m 441) A flat circular coil has 200 identical loops of very thin wire. Each loop has an area of 0.12 m² and 441) _____ carries 0.50 A of current. This coil is placed in a magnetic field of 0.050 T oriented at 30° to the plane of the loop. What is the magnitude of the magnetic torque on the coil? A) 0.52 N · m B) 5.2 N · m C) 2.5 N · m D) 0.25 N · m 442) A flat circular loop carrying a current of 2.0 A is in a magnetic field of 3.5 T. The loop has an 442) ____ area of 0.12 m² and its plane is oriented at a 37° angle to the field. What is the magnitude of the magnetic torque on the loop? B) 0.51 N · m A) 46 N · m C) 0.67 N · m D) 0.10 N · m 443) A flat circular loop of wire is in a uniform magnetic field of 0.30 T. The diameter of the loop is 443) ____ 1.0 m, and a 2.0-A current flows in it. What is the magnitude of the magnetic torque on the loop when the plane of the loop is parallel to the magnetic field? A) 0.00 N · m B) 0.52 N · m C) 0.47 N · m D) 0.41 N · m 444) A flat rectangular loop of wire carrying a 4.0-A current is placed in a uniform 0.60-T magnetic 444) ____ field. The magnitude of the torque acting on this loop when the plane of the loop makes a 30° angle with the field is measured to be $1.1 \text{ N} \cdot \text{m}$. What is the area of this loop? A) 0.80 m^2 B) 0.40 m^2 C) 0.20 m^2 D) 0.26 m^2 E) 0.53 m^2 445) A flat circular loop of wire of radius 0.50 m that is carrying a 2.0-A current is in a uniform 445) ____ magnetic field of 0.30 T. What is the magnitude of the magnetic torque on the loop when the plane of its area is perpendicular to the magnetic field? A) 0.52 N · m B) 0.58 N · m C) 0.41 N · m D) 0.00 N · m E) 0.47 N · m SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 446) A flat square coil of wire measures 9.5 cm on each side and contains 175 turns of very 446) ____ thin wire. It carries a current of 6.3 A in a uniform 0.84-T magnetic field. What angle less than 90° should the plane of this coil make with the magnetic field direction so that the magnitude of the magnetic torque on it is $6.5 \text{ N} \cdot \text{m}$? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 447) ____ 447) A flat circular wire loop of area 0.25 m² carries a current of 5.0 A. This coil lies on a horizontal table with the current flowing in the counterclockwise direction when viewed from above. At this point, the earth's magnetic field is 1.2×10^{-5} T directed 60° below the horizontal. What is the magnitude of the torque that the earth's magnetic field exerts on this loop? A) $2.5 \times 10^{-6} \text{ N} \cdot \text{m}$ B) $1.0 \times 10^{-5} \text{ N} \cdot \text{m}$ D) $5.0 \times 10^{-6} \text{ N} \cdot \text{m}$ C) 7.5 × 10-6 N · m

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
448) At a point 10 m away from a long straight thin wire, the magnetic field due to the wire is 448) - 0.10 mT. What current flows through the wire? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

449) _

449) In the figure, the two long straight wires are separated by a distance of d = 0.60 m. The currents are I_1 = 3.0 A to the right in the upper wire and I_2 = 8.0 A to the left in the lower wire. What are the magnitude and direction of the magnetic field at point P, that is a distance d/2 = 0.30 m below the lower wire? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 450) A high power line carries a current of 1.0 kA. What is the strength of the magnetic field this line 450) ____ produces at the ground, 10 m away? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$) B) 4.7 μT A) 6.4 µT C) 56 µT D) 20 µT 451) A long wire carrying a 2.0-A current is placed along the y-axis. What is the magnitude of the 451) ____ magnetic field at a point that is 0.60 m from the origin along the x-axis? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$) A) 0.67 μT B) 0.12 μT C) 12 T D) 1.3 µT E) 6.7 T

452) A long straight wire carrying a 4-A current is placed along the *x*-axis as shown in the figure. 452) _____ What is the magnitude of the magnetic field at a point P, located at y = 2 cm, due to the current in this wire? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

456) The magnitude of the magnetic field that a long and extremely thin current-carrying wire is ng produces at a distance of 3.0 μm from the center of the wire is 2.0 × 10⁻³ T. How much current flowithrou

gh the wire? (μ_0 = $4\pi \times$	456)					
10-7 T ·						
m/A)	A) 19 mA	B) 380 mA	C) 19	00 mA	D) 30 mA	
457)	A very long thin w	ire produces a magne	etic field of 0.0030	$\times 10^{-4}$ T at a dist	ance of ^{3.0 mm} from	457)
	A) 2000 mA	B) 4.5 mA	C) 1.0	0 mA	D) 14,000 mA	
458)	How much current 1.0 mT at 1.0 cm from	must flow through a must flow through a mire? ($\mu_0 = 4\pi \times$	long straight wire $10-7 \text{ T} \cdot \text{m/A}$	e for the magnetic	field strength to be	458)
	A) 50 mA	B) 9.2 A	C) 5.0 mA	D) 16 A	E) 50 A	
459)	At what distance fr magnetic field due T? ($\mu_0 = 4\pi \times 10^{-7}$ T	rom a long straight w to the wire equal to t ſ · m/A)	ire carrying a curr he strength of Earl	ent of 5.0 A is the th's magnetic fielc	magnitude of the 1 of about 5.0 × 10 ⁻⁵	459)
	A) 3.0 cm	B) 4.0 cm	C) 1.0 cm	D) 2.0 cm	E) 1.0 mm	
460)	Two long parallel w is the magnetic fiel 60 cm from the oth	wires that are 0.40 m a d strength in the plan er? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot$	apart carry current e of the wires at a m/A)	ts of 10 A in oppo point that is 20 cr	site directions. What n from one wire and	460)
	Α) 33 μΤ	Β) 67 μΤ	C) 3.0	3 μΤ	D) 6.7 μT	
461)	Two long parallel v separated by 0.20 m ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{r}$	vires carry currents o n. What is the streng n/A)	f 20 A and 5.0 A ir 5th of the magnetic	n opposite directio c field midway be	ons. The wires are tween the two wires?	461)
	A) 1.0 × 10-5 T	· ,				
	B) 2.0 × 10 ⁻⁵ T					
	C) 4.0 × 10-5 T					
	D) 5.0 × 10-5 T E) 2.0 × 10-5 T					
	E) 3.0 × 10 5 1					
462)	Two long parallel v separated by 20 cm magnetic field? A) 18 cm from th B) 12 cm from th C) 8.0 cm from th D) 4.0 cm from th E) 16 cm from th	wires carry currents o . At what point betw le 20 A wire le 20 A wire he 20 A wire he 20 A wire he 20 A wire le 20 A wire le 20 A wire	f 20 A and 5.0 A ir veen the two wire	n opposite directions do they produce	ons. The wires are e the same strength	462)
	,					
463)	Three long parallel oriented vertically, cm. What is the m due to these wires?	wires each carry 2.0- and they pass throug agnitude of the magn $t_{\mu}(\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m})$	A currents in the s th three of the corr netic field at the fo /A)	ame direction. The section of a horizont a horizont of a h	The wires are al square of side 4.0 .) corner of the square	463)
	Α) 21 μΤ	Β) 12 μΤ	´ C) 2.1 μT	D) 0 T	Ε) 1.2 μΤ	
			-		-	

464) Three very long, straight, parallel wires each carry currents of 4.0 A, directed out of the page as shown in the figure. These wires pass through the vertices of a right isosceles triangle as shown. Assume that all the quantities shown in the figure are accurate to two significant figures. What is the magnitude of the magnetic field at point P at the midpoint of the hypotenuse of the triangle? $(\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 465) An ideal solenoid having 200 turns and carrying a current of 2.0 A is 25 cm long. What is 465) _____

- 465) An ideal solenoid having 200 turns and carrying a current of 2.0 A is 25 cm long. What is the magnitude of the magnetic field at the center of the solenoid? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)
 - 466) In order to trap the starship Enterprise, the diabolical Klingons build a huge ideal solenoid 10 light-years long with a diameter of 2.0 million kilometers. Every kilometer of length of the solenoid contains 100 turns of wire. What magnetic field strength is produced near the center of the solenoid using a current of 2.00 kA? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 467) An ideal solenoid 20 cm long is wound with 5000 turns of very thin wire. What strength 467) _ magnetic field is produced at the center of the solenoid when a current of 10 A flows through it? $(\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})$ A) 3.2 T B) 0.31 T C) 0.20 T D) 0.0063 T E) 4.8 T 468) An ideal solenoid having a coil density of 5000 turns per meter is 10 cm long and carries a 468) ____ current of 4.0 A. What is the strength of the magnetic field at its center? A) 3.1 mT B) 25 mT C) 13 mT D) 6.2 mT 469) An ideal solenoid of length 11 cm consists of a wire wrapped tightly around a wooden core. The 469) _ magnetic field strength is ^{3.0 T} inside the solenoid. If the solenoid is stretched to ^{21 cm} by applying a force to it, what does the magnetic field become? A) 5.7 T D) 20 T B) 3.0 T C) 1.6 T 470) An ideal solenoid that is 34.0 cm long is carrying a current of 2.00 A. If the magnitude of the 470) _ magnetic field generated at the center of the solenoid is 9.00 mT, how many turns of wire does this solenoid contain? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$) A) 3180 B) 1220 C) 2320 D) 1590 E) 860 471) How much current must pass through a 400-turn ideal solenoid that is 4.0 cm long to generate a 471) _____ 1.0-T magnetic field at the center? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$) A) 0.013 A B) 22 A C) 80 A D) 40 A E) 13 A

472) How many turns should a 10-cm long ideal solenoid have if it is to generate a 1.5-mT magnetic 472) _____ field when 1.0 A of current runs through it? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

464) _

A) 1200	B) 15	C) 3200	D) 120	E) 12
/	/	/	/	

- 473) An ideal solenoid with 400 turns has a radius of 0.040 m and is 40 cm long. If this solenoid 473) _____ carries a current of 12 A, what is the magnitude of the magnetic field at the center of the solenoid? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$) A) 6.0 mT B) 16 mT C) 9.0 mT D) 15 mT E) 4.9 mT
- 474) An ideal solenoid is wound with 210 turns on a wooden form that is 4.0 cm in diameter and 50 cm long. The windings carry a current in the sense shown in the figure. The current produces a magnetic field of magnitude $\frac{4.2 \text{ mT}}{I}$, at the center of the solenoid. What is the current *I* in the solenoid windings? (μ 0 = 4 π × 10⁻⁷ T · m/A)

475) The figure shows a mass spectrograph that is operated with deuterons, which have a charge of +*e* and a mass of 3.34×10^{-27} kg. The deuterons emerge with negligible velocity from the source, which is grounded. The speed of the deuterons as they pass through the accelerator grid is 8.0×10^5 m/s. A uniform magnetic field of magnitude *B* = 0.20 T, directed out of the plane, is present to the right of the grid and is perpendicular to the velocity of the deuterons. The deuterons make a circular orbit in the magnetic field. What is the radius of this orbit, and what is the initial direction of their deflection just as they enter the magnetic field? (*e* = 1.60×10^{-19} C)

476) In a mass spectrometer, a single-charged particle has a speed of 1.00 × 10⁶ m/s and enters a uniform magnetic field of 0.200 T at a right angle to the field. The radius of the resulting circular orbit is 20.75 cm. What is the mass of the particle? (*e* = 1.60 × 10⁻¹⁹ C)
A) 6.64 × 10⁻²⁷ kg
B) 1.67 × 10⁻²⁷ kg
C) 3.20 × 10⁻²⁷ kg
D) 9.11 × 10⁻³¹ kg

477) The figure shows a velocity selector that can be used to measure the speed of a charged particle. A beam of particles of charge +*q* is directed along the axis of the instrument. A parallel plate capacitor sets up an electric field *E* which is oriented perpendicular to a uniform magnetic field *B*. If the plates are separated by 3.0 mm and the value of the magnetic field is 0.20 T, what potential difference between the plates will allow particles of speed $v = 5.0 \times 10^5$ m/s to pass straight through without deflection?

474) ____

476) _____

	A) 2800 V	B) 290 V	C) 5700 V	D) 900 V	E) 140 V	
478	B) A beam of electrons velocity selector. I magnitude of the electrough the velocity A) 6.0×10^5 V/m B) 7.2×10^6 V/m C) 5.9×10^3 V/m D) 1.9×10^5 V/m E) 1.1×10^5 V/m	s is accelerated thro f the magnetic field ectric field is requi y selector? ((<i>e</i> = 1.66	bugh a potential dif d of the velocity sel red if the electrons 0 × 10 ⁻¹⁹ C, <i>m</i> electr	fference of 1.0 kV k ector has a magnit are not to be defle on = 9.11 × 10 ⁻³¹ k	pefore entering a sude of 0.010 T, what octed as they pass g)	478)
SHORT	ANSWER. Write the	e word or phrase th	at best completes ea	ich statement or an	swers the question.	
479	9) A singly-charged ic	on enters a velocity	selector that has a	0.19-T magnetic fi	eld 479) _	
	perpendicular to ar	electric field of 1.9	kV/m, with both f	ields perpendicula	ar to the	
	velocity of the ion.	$cm (a = 1.60 \times 10^{-10})$	$\frac{9}{10}$	to deflect the ion i	nto a circular	
	(a) What velocity w	as selected by the r	velocity selector?			
	(b) What was the m	ass of the ion?	,			
MIT TH	DIECHOICE Choo	so the one alternation	ve that hast complet	es the statement or	answars the question	
480)) A flat circular loop magnetic flux throu parallel.	of radius 0.10 m is igh the loop when	rotating in a unifor the plane of the loc	rm magnetic field op and the magnet	of 0.20 T. Find the ic field vector are	480)
	A) 5.5×10^{-3} T · n	n ²	B) () T · m ²		
	C) 3.1×10^{-3} T · m	n ²	D) 6	$5.3 \times 10^{-3} \text{ T} \cdot \text{m}^2$		
481	 A flat circular loop magnetic flux throu perpendicular. 	of radius 0.10 m is 1gh the loop when	rotating in a unifor the plane of the loc	rm magnetic field op and the magnet	of 0.20 T. Find the ic field vector are	481)
	A) 5.5 × 10-3 T · m	n ²	B) g	3.1 × 10−3 T · m ²		
	C) 0 T · m ²		D) 6	$6.3 \times 10^{-3} \mathrm{T} \cdot \mathrm{m}^2$		
482	 A flat circular loop magnetic flux throu an angle of 30°. 	of radius 0.10 m is igh the loop when	rotating in a unifor the plane of the loc	rm magnetic field op and the magnet	of 0.20 T. Find the ic field vector are at	482)
	A) 5.5 × 10-3 T · n	n ²	B) 6	$6.3 \times 10^{-3} \text{ T} \cdot \text{m}^2$		
	C) $3.1 \times 10^{-3} \text{ T} \cdot \text{m}$	n ²	D) ($T \cdot m^2$		
	3) A 2.00-m long meta	l wire is formed in ield is oriented at 3	to a square and pla 30° above the horize	nced in the horizon ontal with a streng	tal <i>xy-</i> plane. A th of 0.344 T. What is	483)
483	the magnetic flux th	rough the square	due to this field?			

of the loop *L* is 0.16 m and its width w is 0.040 m. What is the magnetic flux through the loop when the plane of the loop is perpendicular to the magnetic field?

485) A rectangular loop of wire that can rotate about an axis through its center is placed between the poles of a magnet in a magnetic field with a strength of 0.40 T, as shown in the figure. The length of the loop *L* is 0.16 m and its width *w* is 0.040 m. What is the magnetic flux through the loop when the plane of the loop is parallel to the magnetic field?

486) A rectangular loop of wire that can rotate about an axis through its center is placed between the poles of a magnet in a magnetic field with a strength of 0.40 T, as shown in the figure. The length of the loop L is 0.16 m and its width w is 0.040 m. What is the magnetic flux through the loop when the plane of the loop makes an angle of 60° with the magnetic field?

485) _____

486) ____

A) $1.3 \times 10^{-3} \text{ T} \cdot \text{m}^2$ B) $0 \text{ T} \cdot \text{m}^2$ C) $2.2 \times 10^{-3} \text{ T} \cdot \text{m}^2$ D) $0.80 \text{ T} \cdot \text{m}^2$ E) $2.6 \times 10^{-3} \text{ T} \cdot \text{m}^2$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.487) A flat circular loop having one turn and radius 5.0 cm is positioned with its plane487)

perpendicular to a uniform 0.60-T magnetic field. The area of the loop is suddenly reduced to essentially zero in 0.50 ms. What emf is induced in the loop?	.,
488) A flat coil having 40 turns, each one of cross-sectional area 12.0 cm ² , is oriented with its plane perpendicular to a uniform magnetic field. The field varies steadily from 0.00 T to 1.20 T in 20.0 ms. What emf is induced in the coil during this time?	488)
489) A flat circular coil having 16 turns, each of diameter 20 cm, is in a uniform and steady 0.13-T magnetic field.(a) Find the total magnetic flux through the coil when the field is perpendicular to the plane of the coil.	489)

(b) If the coil is rotated in 10 ms so its plane is parallel to the field, find the average induced emf in the coil.

490) As shown in the figure, a uniform magnetic field *B* is confined to a cylindrical volume of 490) _ radius 0.090 m. This field is directed into the plane of the page and is increasing at a constant rate of 0.200 T/s. Calculate the magnitude and direction (clockwise or counterclockwise) of the current induced in a circular wire ring of radius 0.16 m and resistance 5.3Ω that encircles the magnetic field region.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

⁴⁹¹) A flux of 4.0×10^{-5} T \cdot m² is maintained through a coil of area 7.5 cm² for 0.50 s. What emf is induced in this coil during this time by this flux?

491) _____

- A) 2.0×10^{-5} V B) 3.0×10^{-5} V C) 4.0×10^{-5} V D) 8.0×10^{-5} V E) No emf is induced in this coil.
- 492) A bar magnet is pushed through a coil of wire of cross-sectional area 0.020 m² as shown in the figure. The coil has seven turns, and the rate of change of the strength of the magnetic field in it due to the motion of the bar magnet is 0.040 T/s. What is the magnitude of the induced emf in that coil of wire?

492)

A) 5.6 × 10-5 V B) 5.6 × 10⁻¹ V C) 5.6 × 10-4 V D) 5.6 × 10-3 V E) 5.6 × 10-2 V

493) A circular conducting loop with a radius of 0.40 m and a small gap filled with a $10.0-\Omega$ resistor 493) _____ is oriented in the ^{xy-plane.} If a uniform magnetic field of ^{3.0 T,} making an angle of ^{30°} with the z-axis, increases to 8.0T, in 3.0s, what is the magnitude of the current that will be caused to flow in the loop if it has negligible resistance? A) 0.073 A B) 0.17 A C) 0.042 A D) 0.0073 A

494) ____ ⁴⁹⁴) A closed flat loop conductor with radius ^{2.0} is located in a changing uniform magnetic field. If the emf induced in the loop is 7.0 V, what is the rate at which the magnetic field strength is changing if the magnetic field is oriented perpendicular to the plane in which the loop lies? A) 0.080 T/s D) 0.56 T/s B) 3.5 T/s C) 7.0 T/s

 $^{495)}$ A conductor is formed into a flat loop that encloses an area of $^{2.0 \text{ m}^2}$. The plane of the loop is 495) _ oriented at a 30.0° angle with the *xy*-plane. A uniform time-varying magnetic field is oriented parallel to the *z*-axis. If the emf induced in the loop is ^{20.0} V, what is the rate at which the magnetic field strength is changing? D) 9 T/s

496) A circular coil of 60 turns and radius 4.0 cm is placed with its plane oriented at 90° to a uniform 496) _ magnetic field of ^{0.10 T}. The field is now increased at a steady rate, reaching a value of ^{0.30 T} after 3.0 seconds. What emf is induced in the coil? A) 0.039 V B) 0.020 V C) 0.033 V D) 0.046 V E) 0.026 V

497) ____ 497) The magnetic flux through a coil changes steadily from $4.0 \times 10^{-5} \text{ T} \cdot \text{m}^2$ to $6.0 \times 10^{-5} \text{ T} \cdot \text{m}^2$ in 0.10 s. What emf is induced in this coil? A) 6.0 × 10-4 V B) 2.0 × 10-4 V

,	,
C) 4.0 × 10-4 V	D) None of the given answers are correct.

498) A flat coil is wrapped with 200 turns of very thin wire on a square frame with sides 18 cm long. 498) _____ A uniform magnetic field is applied perpendicular to the plane of the coil. If the field changes uniformly from 0.50 T to 0.00 T in 8.0 s, find the emf induced in the coil. A) 2.1 mV B) 0.21 V C) 0.41 V D) 4.1 mV

499) A flat square coil of wire with 15 turns and an area of 0.40 m² is placed with the plane of its area 499) ____ parallel to a magnetic field of 0.75 T. The coil is flipped so its plane is perpendicular to the magnetic field in a time of 0.050 s. What is the magnitude of the average induced emf in the coil? A) 45 V B) 6.0 V C) 36 V D) 90 V

⁵⁰⁰) A flat coil having 160 turns, each with an area of 0.20 m², is placed with the plane of its area 500) ____ perpendicular to a magnetic field of 0.40 T. The magnetic field changes uniformly from 0.40 T in the +x direction to 0.40 T in the -x direction in 2.0 s. If the resistance of the coil is 16 Ω , at what rate is power generated in the coil during this change? C) 10 W A) 15 W B) 5.0 W D) 20 W

501) As shown in the figure, a wire and a 10-Ω resistor are used to form a circuit in the shape of a square with dimensions 20 cm by 20 cm. A uniform but non-steady magnetic field is directed into the plane of the circuit. The magnitude of the magnetic field is steadily decreased from 0.30 T to 0.10 T in a time interval of 52 ms. What is the induced current in the circuit, and what is its direction through the resistor?

20 cm			
×	×	11	
×	×	20 cn	ı
×	×		
- ν	_	b	
) 15 m	nA, f	rom b	to a
) 9.2 n	nA, i	from <i>l</i>	to a
) 9.2 n	nA, i	from	a to b
) 15 m	nA, f	rom a	to b
) 23 m	nA, f	rom a	to b
	× × 10 Ω) 15 m) 9.2 m) 9.2 m) 15 m) 23 m	× × × × 10 Ω) 15 mA, f) 9.2 mA, f) 9.2 mA, f) 15 mA, f	$\begin{array}{c} x \\ x \\ x \\ y \\ z \\ z$

502) A round flat cond	ucting loop is place	ed perpendicular to a	uniform 0.70 T mag	netic field. If the	502)
area of the loop in	creases at a rate of	$3.4 \times 10^{-3} \text{ m}^2/\text{s}$, what	at is the induced emi	f in the loop?	
A) 2.4 mV	B) 0 mV	C) 4.3 mV	D) 1.7 mV	E) 5.5 mV	

⁵⁰³⁾ The area of a rectangular loop of wire is 3.0 × ^{10⁻³} m². The loop is placed in a uniform magnetic field that changes steadily from 0.20 T to 0.80 T in 1.6 s. The plane of the loop is perpendicular to the direction of the magnetic field. What is the magnitude of the induced emf in that loop?

A)
$$1.1 \times 10^{-3}$$
 V
B) 3.0×10^{-3} V
C) 1.8×10^{-3} V
D) 0 V
E) 2.8×10^{-3} V

504) A constant uniform magnetic field of 0.50 T is applied at right angles to the plane of a flat 504) _____ rectangular loop of area $3.0 \times 10^{-3} \text{ m}^2$. If the area of this loop changes steadily from its original value to a new value of $1.6 \times 10^{-3} \text{ m}^2$ in 1.6 s, what is the emf induced in the loop?

A) $_{9.0 \times} 10^{-2} \text{ V}$ B) $_{4.4 \times} 10^{-4} \text{ V}$ C) 0 V D) $_{7.5 \times} 10^{-2} \text{ V}$ E) $_{1.6 \times} 10^{-2} \text{ V}$

- 505) A flat rectangular coil with dimensions of 5.0 cm × 10 cm is dropped from a zero magnetic field505) _____position into a 0.80-T magnetic field in 0.10 s. The coil has 60 turns and is perpendicular to the
magnetic field. What is the average induced emf in the coil as a result of this action?505) _____A) 6.7 VB) 0 VC) 3.6 VD) 2.4 VE) 5.0 V
- 506) A single-turn loop of wire, having a resistance of 8.00 Ω and a cross-sectional area 200 cm², is perpendicular to a uniform magnetic field that increases steadily from 0.200 T to 2.800 T in 2.20 seconds. What is the magnitude of the induced current in the loop?
 A) 2.95 mA
 B) 3.18 A
 C) 3.18 mA
 D) 2.95 A
 E) 0 A

501) _

507) A round flat metal	l coil has 140 turns and neg	ligible resistance. It is con	nected in a series circuit					
with a $12-\Omega$ resis	tor, with nothing else in the	e circuit. You measure tha	t a $\frac{4.0-A}{10}$ current flows					
through the resistor when a magnetic field through the coil, perpendicular to its area, is								
changing at 3.0 T/	^{s.} What is the radius of the	e coil?						
A) 0.016 m	B) 0.19 m	C) 0.048 m	D) 0.33 m					

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

508) As shown in the figure, a region of space contains a uniform magnetic field. The magnitude of this field is 2.2 T, and it is directed straight into the plane of the page in the region shown. Outside this region the magnetic field is zero. A rectangular loop measuring 0.20 m by 0.60 m and having a resistance of 5 Ω is being pulled into the magnetic field by an external force, as shown.

(a) What is the direction (clockwise or counterclockwise) of the current induced in the loop?

(b) Calculate the magnitude of the external force F_{ext} that is required to move the loop at

- 509) A airplane having a metal surface and a wingspan of 18.0 m flies horizontally at 210. m/s 509) $_{-}$ where the earth's magnetic field is vertical with magnitude 46.0 μ T.
 - (a) What emf is induced across the wings?
 - (b) What wingspan would the plane need to produce 1.00-V emf across its wings?
 - (c) The plane now reverses direction. Does the polarity of the wingtip emf change? That

is, if the left wing was positive before, does it now become negative?

510) An eagle, with a wingspread of 2.0 m, flies toward the north at 8.0 m/s in a region where 510) _____ the vertical component of the earth's magnetic field is 0.20 × 10⁻⁴ T. What emf would be developed between the eagle's wing tips? (It has been speculated that this phenomenon could play a role in the navigation of birds, but the effect is too small, in all likelihood.)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

511) A long vertical wire carries a steady 70 A current. As shown in the figure, a pair of horizontal rails are 0.20 m apart. A 20-Ω resistor connects points *a* and *b*, at the end of the rails. A bar is in contact with the rails, and is moved by an external force with a constant horizontal velocity of 0.90 m/s to the right, as shown. The bar and the rails have negligible resistance. At the instant that the bar is 0.20 m from the wire, what are the induced current in the resistor and its direction through the resistor? ($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

A) 0.63 μA, from *a* to *b*B) 0.32 μA, from *b* to *a*C) 0.63 μA, from *b* to *a*

511) _____

507) _

508) _

D) 0.32 μA, from *a* to *b* E) 1.9 μA, from *b* to *a*

512) An electromagnetic flowmeter is useful when it is desirable not to interrupt the system in which 512) ______ the fluid is flowing (such as the blood in an artery during heart surgery). Such a device is illustrated in the figure. The conducting fluid moves with speed v in a tube of diameter d. Perpendicular to this tube is a magnetic field B. A voltage V is induced between opposite sides of the tube due to the motion of the conducting fluid in the magnetic field. For a certain case, B = 0.120 T, d = 1.2 cm, and the measured voltage is V = 9.43 mV. Determine the speed of the fluid.

- 513) It is known that birds can detect the earth's magnetic field, but the mechanism of how they do this is not known. It has been suggested that perhaps they detect a motional emf as they fly north to south, but it turns out that the induced voltages are small compared to the voltages normally encountered in cells, so this is probably not the mechanism involved. To check this out, calculate the induced voltage across the wingtips of a wild goose with a wingspan of ^{1.1 m} if it is flying directly south at ^{15 m/s} at a point where the earth's magnetic field is 5.0 ×10⁻⁵ T directed downward from the horizontal by ^{17°}.
 A) 0.83 mV
 B) 0.24 mV
 C) 0.079 mV
 D) 0.79 mV
 E) 0.12 mV
- 514) A conducting rod of length ℓ = 25 cm is placed on a U-shaped metal wire that is connected to a lightbulb having a resistance of 8.0 Ω , as shown in the figure. The wire and the rod are in the plane of the page. A constant uniform magnetic field of strength 0.40 T is applied perpendicular to and into the paper. An applied external force pulls the rod to the right with a constant speed of 6.0 m/s. What is the magnitude of the emf induced in the rod?

515) A conducting rod with a length ℓ = 25 cm is placed on a U-shaped metal wire that is connected to a lightbulb having a resistance of 8.0 Ω as shown in the figure. The wire and the rod are in the plane of the page. A constant uniform magnetic field of strength 0.40 T is applied perpendicular to and into the paper. An external applied force moves the rod to the right with a constant speed of 6.0 m/s. What are the magnitude and direction of the induced current in the circuit?

514) ____

515)

- A) 75 mA clockwise
- B) 17 mA counterclockwise
- C) 17 mA clockwise
- D) 52 mA clockwise
- E) 75 mA counterclockwise
- 516) A conducting rod whose length is $\ell = 25$ cm is placed on a U-shaped metal wire that is connected 516) ______ to a lightbulb having a resistance of 8.0 Ω as shown in the figure. The wire and the rod are in the plane of the page. A constant uniform magnetic field of strength 0.40 T is applied perpendicular to and out of the paper. An external applied force moves the rod to the left with a constant speed of 12 m/s. What are the magnitude and direction of the induced current in the

. . .

circuit?

- A) 34 mA counterclockwise
- B) 100 mA clockwise
- C) 150 mA counterclockwise
- D) 150 mA clockwise
- E) 34 mA clockwise
- 517) A conducting rod whose length is $\ell = 1.60$ m is placed on frictionless U-shaped metal rails that is connected to a lightbulb having a resistance of 4.00Ω as shown in the figure. The rails and the rod are in the plane of the page. A constant uniform magnetic field of strength 2.20 T is applied perpendicular to and out of the paper. What is the magnitude of the external applied force needed to move the rod to the right with a constant speed of 6.00 m/s?

in the			•				•				
	٠	٠	٠	٠	٠	٠	•				
	٠	•	٠	•	•	•	•				
								ш В-!	ield⊥out (●)		
А	.) 8.60	Ν		В) 9.30) N			C) 18.6 N	D) 12.6 N	E) 10.6 N

518) A conducting rod whose length is $\ell = 1.60$ m is placed on frictionless U-shaped metal rails that is connected to a lightbulb having a resistance of 4.00 Ω as shown in the figure. The rails and the rod are in the plane of the page. A constant uniform magnetic field of strength 2.20 T is applied perpendicular to and out of the paper. An external applied force moves the rod to the right with a constant speed of 6.00 m/s. At what rate is energy dissipated in the lightbulb?

519) A conducting rod whose length is ℓ = 27.0 cm is placed on frictionless U-shaped metal rails that 519) _____ is connected to a lightbulb having a resistance of 5.00 Ω as shown in the figure. The rails and the rod are in the plane of the page. A constant uniform magnetic field of strength 1.20 T is applied perpendicular to and out of the paper. An external applied force moves the rod to the right with a constant speed. At what speed should the rod be pulled so that the lightbulb will consume energy at a rate of 1.10 W?

	•	• • •	•	• • •	•	•	•			
A	A) 4.2	6 m/s		В) 2.00) m/s		B-field⊥ out (●) C) 7.24 m/s	D) 3.50 m/s	E) 6.00 m/s

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the quest	tion.	
520) You wish to construct a simple ac generator with a maximum output of 12 V when	520)	
rotated at 60 Hz. A magnetic field of 0.050 T is available. If the area of the rotating coil is		
100 cm ² , how many turns are needed?		

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

522) The coil of an ac generator has 80 loops and a cross-sectional area of 0.40 m². What is the maximum emf that can be generated by this generator if it is spinning with an angular speed of 2.0 rad/s in a 1.25-T magnetic field?
A) 60 V
B) 120 V
C) 100 V
D) 80 V

523)	An	ac generator consists of	100 loops of wire, each of	f area 0.090 m ² , and has a	a <i>total</i> resistance 12	523)			
	Ω.	The loops rotate about	a diameter in a magnetic	field of 0.50 T at a consta	int angular speed of				
	60 revolutions per second. Find the maximum induced emf in the generator.								
	А	A) 0.54 kV	B) 3.4 kV	C) 0.27 kV	D) 1.7 kV				

524) An ac generator contains 80 flat rectangular loops of wire, each of which is 12 cm long and 8 cmside. magnewide.The loops rotate at 1200 rpm about an axis through the center and parallel to the longIf the tic

field in which the loop rotates is uniform, has magnitu de 0.30 T, and is perpendi cular to the axis of rotation, what will be the maximu m output voltage of this generato r?	524)				
r?	A) 35 V	B) 29 V	C) 27 V	D) 20 V	

525) An ac generator with a <i>total</i> resistance of 12 Ω contains 100 flat loops of wire, each with an area					
of 0.090 m ² . The loops rotate at 60 rev/s in a magnetic field of magnitude 0.50 T. What is the					
maximum possible i	induced current?				
A) 0.28 kA	B) 0.14 kA	C) 23 A	D) 46 A		

526) A rectangular coil of *N* turns, length L = 25 cm, and width w = 15 cm, as shown in the figure, is rotating in a magnetic field of 1.6 T with a frequency of 75 Hz. If the coil develops a maximum emf 56.9 V, what is the value of *N*?

527) A circular coil with 600 turns has a radius of 15 cm. The coil is rotating about an axis 527) _ perpendicular to a magnetic field of 0.020 T. If the maximum induced emf in the coil is 1.6 V, at what angular frequency is the coil rotating? A) 0.60 rad/s B) 1.4 rad/sec C) 1.9 rad/s D) 0.30 rad/s E) 0.90 rad/s

528) The primary coil of an ideal transformer has 100 turns and its secondary coil has 400 turns. If
the ac voltage applied to the primary coil is 120 V, what voltage is present in its secondary coil?528) __A) 70 VB) 400 VC) 30 VD) 100 VE) 480 V

SHORT 529	ANSWER. Write the v) An ideal transformer If 120 V at 2.0 A is ap (a) what voltage is pr (b) what current is pr	word or phrase that has 60 turns on its plied to the primate resent in the second resent in the second	t best comple primary coi ty, lary? lary?	tes each state 1 and 300 tur	e ment or answers t rns on its seconda	he question. ry coil. 529)
MULTH 530	PLE CHOICE. Choose)) An ideal step-up trar number of turns in it	the one alternative asformer doubles a s primary coil to th	e that best co primary vol le number of	mpletes the st tage of 110 V turns in the	atement or answe 7. What is the rational secondary coil?	rs the question o of the	n. 530)
	A) 2:1	B) 1:2	C) 1:8	D	9) 4:1	E) 1:4	
531	l) When 5.0 A at 110 V flow in the secondary	flows in the prima /?	ry of an idea	l transforme	r, how many amp	s at 24 V can	531)
	A) 1.1 A	B) 4.6 A		C) 23 A	D) {	5.0 A	
532	2) The secondary coil of coil operates on 120 V A) 1.66 A	f an ideal neon sigr V. What current d B) 0.160 A	n transforme loes the prim	r provides 75 hary draw? C) 0.625 A	500 V at 10.0 mA. D) (The primary 0.625 mA	y 532) <u> </u>
533	3) The primary coil of a ac current in the seco A) 1/4 A	n ideal transforme ndary coil is 2 A, v B) 1/2 A	r has 100 tur vhat is the cu C) 2 A	ns and its sec urrent in its p D	condary coil has 4 primary coil? 9 4 A	00 turns. If th E) 8 A	ne 533)
534	4) The primary coil of a current in the primar	n ideal transforme y coil is 2 A, what	r has 600 tur is the curren	ns and its sec t in its secon	condary coil has 1 dary coil?	50 turns. If th	ae 534)
535	5) A current of 2.0 A in secondary. How ma A) 14	the 100-turn prima any turns are in the B) 4	e secondary?	al transforme C) 700	er causes 14 A to f	low in the	535)
536	5) In an ideal transform has 100 turns?	er, how many turn	s are necess	ary in a 110-V	V primary if the 24	4-V secondary	y 536)
	A) 22	B) 458		C) 110	D) 2	240	
537	7) An ideal transformer current in the second	consists of a 500-to ary is 3.0 A, what i	urn primary s the current	coil and a 20 t in the prima	00-turn secondar ary?	y coil. If the	537)
	A) 48 A	B) 1.3 A		C) 12 Å	D) (0.75 A	
SHORT 538	ANSWER. Write the of th	word or phrase that transformer is need io of the number o	t best comple led to reduce f turns in the	tes each state e a primary v e secondary t	e ment or answers t roltage of 120 V to to the number of t	he question. 6 60 V. 538 urns in)
539	 An ideal transformer 3.6 A. (a) Determine the cur (b) Determine the tur (c) What is the ratio c 	steps down 120 V crent in the primary rns ratio. of output power to	to 5.0 V and y. input power	the 1226tur	rn secondary supj	plies 539)
540)) An ideal transformer train. The primary is	with 120 turns in i connected across a	ts secondary 120-V wall	v supplies 12 outlet.	V at 220 mA to a	toy (a) Ho	w many turns are in the

primary? 540) (b) What is the primary current? (c) What power is delivere d by the wall outlet? 541) An ideal transformer has 60 turns on its primary coil and 300 turns on its secondary coil. 541) _____ If 120 V at 2.0 A is applied to the primary, what voltage and current are present in the secondary? 542) You need an ideal transformer to reduce a voltage of 150 V in the primary circuit to 25 V 542) _____ in the secondary circuit. The primary circuit has 130 windings and the secondary circuit is completed through a 55- Ω resistor. How many windings should the secondary circuit contain? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 543) ____ 543) The primary of an ideal transformer has 100 turns and its secondary has 200 turns. If the input current at the primary is 100 A, we can expect the output current at the secondary to be A) 200 A. B) 100 A. C) 50 A. D) none of the given answers. 544) The primary of an ideal transformer has 100 turns and its secondary has 200 turns. If the input 544) _____ voltage to the primary is 100 V, we can expect the output voltage of the secondary to be A) 50 V. B) 200 V. C) 100 V. D) none of the given answers. 545) The primary of an ideal transformer has 100 turns and its secondary has 200 turns. Neglecting 545) ____ frictional losses, if the power input to the primary is 100 W, we can expect the power output of the secondary to be A) 100 W. B) 200 W. C) 50 W. D) none of the given answers. 546) A generator produces 60 A of current at 120 V. The voltage is usually stepped up to 4500 V by 546) _____ an ideal transformer and transmitted through a power line of total resistance 1.0Ω . Find the number of turns in the secondary if the primary has 200 turns. B) 4500 D) 7500 A) 200 C) 5 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 547) The mutual inductance between two coils is 10 mH. The current in the first coil changes 547) ____ uniformly from 2.7 A to 5.0 A in 160 ms. If the second coil has a resistance of 0.60 Ω , what is the magnitude of the induced current in the second coil? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 760 measing 548) A 18-mH solenoid inductor is wound on a form that is 0.80 m long and 0.10 m in diameter. A coil having a resistance of 7.2Ω is tightly wound around the solenoid at its center. The mutual and at the is rate of inductance of the coil and solenoid is $12 \,\mu\text{H}$. At a given instant, the current in the solenoid is decr 2.5 A/s.

At the given instant, what is the induced current in the coil2	548)					-
con:	Α) 5.8 μΑ	Β) 6.7 μΑ	C) 4.2 µA	D) 5.0 μA	Ε) 3.3 μΑ	
549)	What is the self-in 1.00 × 10 ⁻⁴ m ² and	nductance of an ideal d has 1000 turns of w	l solenoid that is 300 vire? ($\mu_0 = 4\pi \times 10^{-7}$	cm long with a cros T · m/A)	ss-sectional area of	549)
	Α) 4.19 μΗ	B) 4.19 nH	C) 41.9 nH	D) 4.19 pH	E) 41.9 µH	
550)	A coil with a self- What is the emf in	inductance of 6.0 H l nduced in this coil?	has a constant curre	nt of 2.0 A flowing t	hrough it for 2.0 s.	550)
	A) 8.0 V	B) 0.0 V	C) 12 V	D) 6.0 V	E) 4.0 V	
551)	A coil with a self- the switch is close at this instant?	inductance of 6.0 H i ed, the rate of change	is connected to a dc e of current is 2.0 A/	battery through a sw s. What is the emf in	vitch. As soon as duced in this coil	551)
	A) 0.0 V	B) 12 V	C) 3.0 V	D) 0.33 V	E) 6.0 V	
552)	The inductance of m ² is 0.800 mH. A) 282	f a solenoid that is 14 How many turns of B) 318,000	l.0 cm long and has wire does this soler C) 159,000	a cross-sectional area noid have? ($\mu_0 = 4\pi$ > D) 150	a of 1.00 × ¹⁰⁻⁴ × 10- ⁷ T · m/A) E) 944	552)
SHORT A 553) MULTIP	ANSWER. Write () The figure shows solenoid is decrea measured to be 2. ((a) What is the se (b) If the current is higher potential?	the word or phrase the a solenoid having not a solenoid having not a sing at a rate of 2.1 5 V. 2.1 5 V. 2.1 - inductance of this is in the direction from $b = \frac{b}{2}$ b - b - b - b - b - b - b - b - b - b -	at best completes each o appreciable resista . A/s, the self-induce solenoid? m <i>b</i> to <i>a</i> in the figur b to <i>a</i> in the figur	ch statement or answern ince. When the current ed emf in the solenoi e, which point, <i>a</i> or <i>b</i> es the statement or an	ers the question. ent in this 553) _ d is o, is at	
554)	The current flowi 190-H inductor, v A) 32 V	ng through a circuit what is the emf across B) 32 mV	is changing at a rate s the inductor? C) 1	e of 6.0 A/s. If the circ	cuit contains a D) 1100 V	554)
555)	An ideal solenoid radius? ($\mu_0 = 4\pi$ >	with 3000 turns is 76 (10 ⁻⁷ T · m/A)	0.0 cm long. If its set	lf-inductance is 25.0	mH, what is its $D = 0.00199$ m	555)
	<i>AJ 52.</i> 0 M	DJ 0.0222 1	un C) 3.	27 III	0.00199 IN	
556)	You need an indu should be its self-	ictor that will store 2 inductance?	0 J of energy when a	a 3.0-A current flows	through it. What	556)
	A) 60 H	B) 3.7 H	C) 4	4 H	D) 90 H	

	557) A 4.0-mH coil ca A) 10 mJ C) 20 mJ	arries a current of 5.0 A	. How much ene B) 2 D) 1	rgy is stored in its 2.0 mJ none of the given a	magnetic field? nswers	557)
	558) A large electron	nagnet has a 28 T magn	etic field between	its poles. What is	the magnetic energy	558)
	density in that r	egion of space? ($\mu_0 = 4\pi$	$\tau \times 10^{-7} \mathrm{T} \cdot \mathrm{m/A}$			
	A) 390 J/cm ³	B) 110 J/cm	3 C) 4	.9,000 J/cm ³	D) 310 J/cm ³	
SHO	DRT ANSWER. Write 559) The figure show the inductance i the switch S is o (a) What is the c (b) After leaving after it is opened $\epsilon = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	a the word or phrase tha <i>t s</i> a circuit. The ideal l s $L = 0.50$ H, and the re- open with no currents fl current in the resistor <i>R</i> g the switch has been cl d, what is the current in R_2 L	It best completes er pattery has a const esistances are R_1 = owing. Then the s 1 the instant after osed for a very loo R_1 ? e that best complet	es the statement or an ant terminal volta = $12 \Omega_{and} R_2 = 9$ witch is suddenly the switch is close ng time, it is opene	swers the question. ge of $\varepsilon = 23 \text{ V}, 559$) _ $0 \mathbf{\Omega}$. Initially closed. d? ed again. Just * answers the question.	
	560) A series circuit of What is the time	contains a 1.0-k Ω resistence constant for the circuit	tor, a 5.0-mH indu +?	ctor, and an ideal	25-V power supply.	560)
	A) 5.0 μs	B) 1.6 μs	C) 1	.6 s	D) 5.0 s	
	561) A simple series inductor. Wha	circuit contains a 6.0-Ω t the time constant of tl	resistor, an ideal us circuit?	15-V DC power su	pply, and an 18-H	561)
	A) 0.33 s		B) 1	10 s		
	C) 3.0 s		D) I	None of the given a	answers are correct.	
	562) What resistance	should be added in ser	ries with a 1.0 H ir	ductor to give a ci	rcuit with a time	562)
	A) 0.33 Ω	Β) 3.0 Ω	C) 1	.1 Ω	D) 0.33 kΩ	
	563) The series circuit $V_{\rm B} = 60 \text{ V}$, an id the switch is ope closed. What is $V_{\rm B} = \frac{1}{5}$	it shown in the figure c leal inductor $L = 45$ H, en, and there is no curr the current in the circui	ontains an ideal be a resistor $R = 19$ c ent in the inductor t 0.237 s after clo	httery with a const http://www.aconst theorem $t = 0 s$, theorem $t =$	ant terminal voltage a switch S. Initially, he switch is suddenly	563)
	A) 3.2 A	 ́Т В) 0.30 А	C) 0.25 A	D) 0.20 A	E) 1.7 A	

564) The series circuit shown in the figure contains an ideal battery with a constant terminal voltage $V_B = 60 \text{ V}$, an ideal inductor L = 59 H, a resistor R = 19 ohm resistor, and a switch S.Initially, the switch is open, and there is no current in the inductor. At time t = 0 s, the switch is suddenly closed. What is the current in the circuit when the voltage across the resistor is equal to the

volta induct ge or? acros s the

instant, what is the rate of change of the current?

A) -6.0 A/s	B) -20 A/s	C) -24 A/s	D) -11 A/s	E) -15 A/s

566) As shown in the figure, a circuit consists of a resistor $R = 13 \Omega$ in series with an ideal inductor L = 33 H having no resistance. At time t = 0 s, there is a 12-A current in the circuit. When the magnetic energy of the inductor is 1600 J, what is the rate of dissipation of energy in the resistor?

A) 630 W	B) 320 W	C) 1300 W	D) 1600 W	E) 950 W

567) As shown in the figure, a circuit consists of a resistor $R = 20\Omega$ in series with an ideal inductor L = 42 H having no resistance. At time t = 0 s, there is a ^{12-A} current in the circuit. At time t = 5.0 s, what is the emf across the inductor?

568) A 25-mH inductor is connected in series with a 20-Ω resistor through an ideal 15-V dc power supply and a switch. If the switch is closed at time *t* = 0 s, what is the current when *t* = 2.0 ms? A) 0.60 A B) 0.80 A C) 0.40 A D) 0.70 A E) 0.50 A
569) A 40-mH inductor is connected in series with a 50-Ω resistor through an ideal ¹⁵-V dc power ⁵⁶⁹

supply and an open switch. What is the current ^{7.0} ms after closing the switch? A) 550 mA B) 850 mA C) 280 mA D) 300 mA E) 650 mA

570) In a series circuit containing a resistor and an inductor connected to an ideal dc source and a switch, the inductor gets 40% of its maximum current 1.8 s after the switch is closed. What is the time constant of this circuit? A) 0.80 s B) 5.5 s C) 2.5 s D) 1.5 s E) 3.5 s

572) A 1.5-H inductor is connected in series with a 200- Ω resistor through an ideal 15-V dc power supply and an open switch. After closing the, what is the maximum energy that will be

contain the ined induct

572)

	A) 2.2 mJ	B) 4.2 mJ	C) 1.2 mJ	D) 5.2 mJ	E) 3.2 mJ	_
	573) A series circuit co inductor. If the po source emf, ^{ε0} . A) 23 V	onsists of an open swi otential across the res B) 24 V	tch, an ideal emf se istor is ^{48.0 V} at ⁹ C) 1	purce ε_0 , a $4.0-k\Omega_1$ 0 ms after the swite 00 V	resistor, and a ^{5.0–H} ch is closed, find the D) 48 V	573)
SHC	ORT ANSWER. Write	the word or phrase th	at best completes ea	ch statement or ansv	vers the question.	
	574) American power (a) At what frequ (b) What is the m	plants usually supply ency is this voltage s aximum voltage?	y 120 V ac. 1pplied?		574) _	
	575) A 100-W light bu the rms current a	lb is powered by 120 nd the current ampli	V ac 60.0-Hz house ude.	hold connection. D	etermine 575) _	
	576) The peak current What average po	and voltage outputs wer is provided by th	of a generator are 2 le generator?	0 A and 240 V, resp	ectively. 576) _	
	577) The potential app through this resis	plied to a 20-Ω resisto tor?	r is <i>v</i> = (60 V) cos(3	3t). What is the rms	current 577) _	
	578) The current throu amplitude and (b	igh a 50-Ω resistor is) the rms current?	I = (0.80 A) sin(240). What are (a) the c	urrent 578) _	
	579) A 0.150-kW lamp through the lamp lamp?	is plugged into a 120 , (b) the rms current)-V ac wall outlet. W through the lamp, a	Vhat are (a) the peal and (c) the resistanc	< current 579) _ e of the	
	580) The potential app consumed in the	plied to a 20-Ω resisto resistor?	r is (60 V) cos(33 <i>t</i>).	What is the average	power 580) _	
MU	LTIPLE CHOICE. Ch	oose the one alternativ	e that best complet	es the statement or a	nswers the question.	
_	581) If the maximum A) 16.0 V	voltage of an ac signa B) 4.0 V	l is 8.0 V, what is th C) 5.7 V	ne rms value of this D) 6.2 V	voltage? E) 2.8 V	581)
	582) A 120-V rms volt series. If the max current in this cir	age at 60.0 Hz is appl mum value of the cu cuit?	ied across an induc rrent in this circuit	tor, capacitor and a is 1.60 A, what is th	100- Ω resistor in e rms value of the	582)
	A) 1.82 A	B) 1.13 A	C) 1.60 A	D) 2.26 A	E) 2.66 A	
	583) An alternating cu across it can <i>neve</i> supplied to this c	rrent is supplied to a r, even for an instant, omponent while stay	n electronic compo exceed ^{10 V.} Wha ing below the volta	nent with a rating th t is the highest rms ge_limit?	nat the voltage voltage that can be	583)
	A) 1012 V	B) 5 V	C) 5	$\sqrt{2}$ V	D) 100 V	
	584) What is the peak A) 170 V	voltage in an ac circu B) 84.8 V	it where the rms v C) 1	bltage is 120 V? 20 V	D) 240 V	584)
	585) A 150-W lamp is A) 1.2 A	placed into a 120-V a B) 0.80 A	c outlet. What is t C) 0	he peak current? .88 A	D) 1.8 A	585)

or?

	586)	A 10- Ω resistor is cor resistor?	nnected to a 120-V a	c power supply	. What is the p	eak current through th	.e 586)
		A) 12 A	B) 17 A	C)	0.12 A	D) 0.083 A	
	587)	The current through What is the rms curre	a 50-Ω resistor is I = ent?	= (0.80 A) sin(24	0t), where t is m	easured in seconds.	587)
		A) 0.80 A	B) 1.1 A	C)	0.57 A	D) 1.6 A	
	588)	The current through How much power or	a 50- Ω resistor is <i>I</i> = a average is dissipat	= (0.80 A) sin(24 red in the resisto	0 <i>t</i>), where <i>t</i> is more <i>t</i> is more the transformed to the transforme	easured in seconds.	588)
		A) 32 W	B) 64 W	C)	45 W	D) 16 W	
SHO	RT A 589)	NSWER. Write the At what frequency de	word or phrase that oes a 10-µF capacito	best completes e or have a reacta	each statement or nce of 0.12 kΩ?	answers the question. 589	9)
	590)	At what frequency w capacitive reactance of	rill the inductive rea of a 27-pF capacitor	nctance of a 44-m ?	nH inductor be e	equal to the 590	0)
	591)	A 0.10- μ F capacitor is (a) What is its capacit	s connected to a 120 tive reactance?)-V rms 60-Hz s	ource.	593	1)
		(b) What is the rms c	urrent to the capaci	tor?		1 4	
		(c) If both the capacit current?	ance and the freque	ency were doub	led, what would	be the rms	
	592)	A 0.200-H inductor is (a) What is the induc	s connected to a 60.0 tive reactance?	0-Hz 120-V rms	source.	592	2)
		(b) What is the rms ci (c) If both the inducta	urrent to the induct	or? ncy were doubl	ed, what would	be the rms	
	593)	What capacitance will are in a 120-V 60-Hz	ll have the same rea circuit?	ictance as a 100-	mH inductance	of both of them 593	3)
MUI	L TIPI 594)	LE CHOICE. Choose In the circuit shown i capacitive reactance i What is the capacitar <i>C</i>	e the one alternative in the figure, the 60- is 860Ω , the induct nce <i>C</i> of the capacito	that best comple -Hz ac source ha tive reactance is or?	etes the statement as a voltage amp 310 Ω, and the	t or answers the question ditude of 120 V, the resistance is 420Ω .	n. 594)
			₹ R				
		A) 6.0 μF	B) 8.9 μF	C) 19 µF	D) 12 μF	E) 3.1 μF	
	595)	The reactance of a cap A) 0.398 μF	pacitor is ^{4.0kΩ} at B) 0.563 μF	a frequency of C)	<mark>0.10 kHz</mark> . What 15.7 μF	is the capacitance? D) 2.50 μF	595)
	596)	A 5.0-μF capacitor is voltage applied to the A) 160 Ω B) 5.0 Ω	connected to an acted to a construct the construction of t	signal with a fre what is its capa	equency of 60 Hz citive reactance?	z. If the maximum	596)

597) The capa	acitive reacta	nce of a 64-µF capac	itor in an ac circuit i	$s 4.0 \times 10^2 \Omega. V$	What is the	597)
frequenc A) 80	ry of the appl Hz	ied signal? B) 2.2 Hz	C) 800 Hz	D) 6.2 Hz	E) 17 Hz	
598) A 120-V Hz, wha	rms voltage i t is the rms v	s applied across a 6 alue of the current i	.0-μF capacitor. If th n the circuit?	e frequency of t	the generator is 60	598)
A) 0.2	7 A	B) 0.17 A	C) 0.47 A	D) 0.071 A	E) 0.37 A	
599) At what A) 60	frequency do Hz	oes a 10-μF capacitor B) 42 Hz	r have a reactance of C) 83 Hi	f 1200 Ω? z	D) 13 Hz	599)
600) At what A) 0.3	frequency wi 1 MHz	ill the capacitive rea B) 16 kHz	ctance of a 0.010-µF C) 1.0 ki	capacitor be 10 Hz	0 Ω? D) 0.16 MHz	600)
601) What is A) 3.1	the rms curre mA	nt through a 0.0010- Β) 5.4 μΑ	μF capacitor at 1000 C) 10 m) Hz and 5.0 V? A	D) 31 µA	601)
602) What is A) 7.5	the reactance m Ω	of a 20-mH inducto B) 0.13 Ω	r at a frequency of 6 C) 7.5 Ω	0 Hz? D) 1.2 mΩ	Ε) 1.2 Ω	602)
603) At what A) 637	frequency is ' Hz	the reactance of a 20 B) 796 Hz).0-mH inductor equ C) 318 Hz	al to 120 Ω? D) 955 Hz	E) 1110 Hz	603)
604) In the circapacitiv What is 60 Hz (rcuit shown in re reactance in the inductance C	In the figure, the 60-I $s = 960 \Omega$, the inductor? The <i>L</i> of the inductor? <i>R</i>	Hz ac source has a v tive reactance is ²⁷⁰	oltage amplitud Ω , and the resi	le of 120 V, the istance is ⁵⁹⁰ Ω.	604)
A) 340	00 mH	B) 720 mH	C) 1600 mH	D) 4500 mH	E) 2700 mH	
605) What is A) 5.3	the reactance Ω	of a 1.0-mH inducto B) 0.19 Ω	or at 60 Hz? C) 0.38 9	Ω	D) 2.7 Ω	605)
606) What is A) 2.5	the inductive 0 Ω	reactance of a 2.50- B) 2500 Ω	mH coil at 1000 Hz? C) 15.7 9	Ω	D) 796 Ω	606)
607) At what A) 159	frequency w Hz	ill a 14.0-mH coil ha B) 505 Hz	ve 14.0 Ω of inducti C) 1000	ve reactance? Hz	D) 257 Hz	607)
608) The indu amplitud	actor in a radi de 2.40 V is ac 7 mH	o receiver carries a cross it at a frequenc B) 1.36 mH	current of amplitude y of 1400 Hz. What	e 0.200 A when is the value of t D) 1 43 mH	an ac voltage of he inductance? E) 4 42 mH	608)
609) At what	frequency w	ill a 20.0-mH induct	or have an inductive	e reactance of 10	00 Ω?	609)

A)	796	Hz	
,			

- B) 655 Hz
- C) 225 Hz
- D) 457 Hz
- E) None of the other answers is correct.

610) What rms current flows in a 60-mH inductor when 120-V rms ac at a frequency of 20 kHz is applied to it?				
A) 16 mA	B) 32 mA	C) 8.0 mA	D) 24 mA	
611) What is the rms current th A) 0.94 A	rough a 2.50-mH coil due B) 117 A	to a 110-V rms, 60-Hz so C) 2.5 A	urce? D) 104 A	611)
612) A series ac circuit has a rearrest reactance of 15Ω . Find the	sistance of 9.0 Ω , a capacit e impedance of the circui	tive reactance of ²⁵ 0, an t.	d an inductive	612)
Α) 31 Ω	B) 19 Ω	C) 13.5 Ω	D) 49 Ω	
613) For a series ac circuit const inductance of ^{32.0 H} , wha amplitude is 110 V?	isting of a resistance of ¹ at frequency is needed to a	8.0 kO , a capacitance of minimize the impedance	7.0 μF, and an if the voltage	613)
A) 2.9 kHz	B) 0.011 kHz	C) 0.067 kHz	D) 16 kHz	
614) A 120-V rms voltage is app of the generator is 60.0 Hz	plied across a 6.00-µF cap , what is the impedance o	acitor and a 100-Ω resisto f this circuit?	or. If the frequency	614)
A) 453 Ω B) 5	⁵ 553 Ω ¹ C) 353 Ω	D) 153 Ω	Ε) 253 Ω	
615) A 10-Ω resistor is connecte A) 10 Ω	ed in series with a 20-μF c B) 8.0 Ω	apacitor. What is the im C) 13 Ω	pedance at 1.0 kHz? D) 15 Ω	615)
616) What is the impedance of reactance, and 10.0Ω of ca	an ac series circuit with 12 pacitive reactance?	2.0 Ω of resistance, 15.0 Ω	of inductive	616)
Α) 13.0 Ω	Β) 21.9 Ω	C) 27.7 Ω	D) 11.6 Ω	
617) What is the impedance at connected in series?	1500 Hz if a 100-Ω resisto	r, 20-mH coil, and 1.0-µF	capacitor are	617)
A) 0.11 kΩ	B) 0.19 kΩ	C) 82 Ω	D) 0.13 kΩ	
618) If a 1.0-kΩ resistor is conn kHz?	ected in series with a 20-n	nH inductor, what is the i	impedance at 1.0	618)
Α) 0.13 ΜΩ	B) 1.1 kΩ	C) 1.0 kΩ	D) 0.13 kΩ	
619) What resistance is needed impedance of 100 Ω at 1.5	in a series circuit with a 2 kHz?	0-mH coil and 1.0-µF cap	pacitor for a total	619)
Ā) 82 Ω	Β) 57 Ω	C) 0.16 kΩ	D) 18 Ω	
620) Which one of the following a total impedance of 110 C	g capacitances in series w 2 at 2.0 kHz?	ith a 100-Ω resistor and 1	5-mH coil will give	620)
Α) 0.56 μF	B) 46 μF	C) 10 µF	D) 0.14 mF	
621) What resistance must be p of 40000 Ω?	ut in series with a 450-mH	H inductor at 5000 Hz for	a total impedance	621)
A) 37 kΩ	B) 40 kΩ	C) 26 kΩ	D) 45 kΩ	

622) What inductance must be put in series with a 100-kΩ resistor at 1.0-MHz for a total impedance					622)
A) 0.17 H	B) 18 mH	C) 0.15 H	Н	D) 1.5 H	
623) What resistance is ne	eded in series with a	10-µF capacitor at 1	1.0 kHz for a tota	al impedance of 45	623)
A) 29 Ω	B) 61 Ω	C) 42 Ω		D) 1.8 Ω	
624) The impedance of an applied ac voltage is A) 848 Ω	<i>RC</i> circuit containin 16.0 Hz, what is the B) 548 O	g a 35.0-µF capacito resistance of the res	r is 800 Ω. If the sistor? D) 748 Ω	frequency of the	624)
(25) The impedance of an	PC circuit with a 20	0 \cap ineqister a 1060 (The frequence	way of the applied ac	625)
voltage is ^{40.0 Hz} , w A) 3.91 μF	hat is the capacitance B) 2.91 μF	e of the capacitor? C) 4.91 μF	D) 5.91 μF	E) 300 μF	623)
626) A 120-V rms voltage	at 1.00 kHz is applie	d to a resistor and a	n inductor in set	ries. If the	626)
A) 1.04 A	B) 1.84 A	C) 1.09 A	A	D) 1.54 A	
627) A 200-Ω resistor, a 25 source at 1000 Hz. If could be the capacita	5-mH inductor, and a the impedance of thi nce of the capacitor?	a capacitor are conne s circuit is 240 Ω , wi	ected in series ac hich one of the f	cross an ac voltage ollowing quantities	627)
A) 7.5 μF	B) 3.2 μF	C) 6.5 µF	D) 4.2 μF	E) 5.5 μF	
628) A 25.0-mH inductor, ac voltage source at 1 resistor?	a 2.00-µF capacitor, .00 kHz. If the impe	and a certain resisto dance of this circuit	r are connected is 200 Ω , what is	in series across an s the value of the	628)
Α) 552 Ω	Β) 100 Ω	C) 184 Ω	D) 200 Ω	Ε) 579 Ω	
629) A 120-V rms voltage and capacitive reacta	at 1000 Hz is appliec nce and a 200-Ω resi	l to a series <i>RLC</i> circ stance. What is the i	cuit with an equa mpedance of the	al value of inductive is circuit?	629)
Α) 240 Ω	Β) 100 Ω	C) 200 Ω	D) 0 Ω	Ε) 120 Ω	
630) A 120-V rms voltage impedance of this cir	at 60 Hz is applied a cuit is 216 Ω, what is	cross an inductor ar the rms value of the	nd a 200- Ω resist e current?	or. If the	630)
A) 0.446 A	B) 0.667 A	C) 0.767 A	D) 0.336 A	E) 0.556 A	
631) A 100-Ω resistor is co 1.00 kHz. What is the	onnected in series wi impedance of this c	th a 10.0-mH induct ircuit?	or across an ac s	ource operating at	631)
Α) 236 Ω	Β) 100 Ω	C) 200 Ω	D) 118 Ω	Ε) 1000 Ω	
632) What resistance must impedance of 9.0×10^{4} Ω A) $_{6.0} \times 10^{4}$ Ω B) $_{8.0} \times 10^{4}$ Ω C) $_{35} \times 10^{4}$ Ω	t be put in series wit 0 ⁴ Ω?	h a 35-mH inductor	at 4000 Hz to ha	ve a total	632)
D) $_{9.0 \times}$ $^{10^4}$ $_{\Omega}$ E) $_{7.0 \times}$ $^{10^4}$ $_{\Omega}$					

633) What inductance must be put in series with a 200- Ω resistor at 4.00 kHz to have a total impedance of 240 Ω^2							
A) 6.28 mH	B) 3.28 mH	C) 5.28 mH	D) 12 mH	E) 4.28 mH			
634) A 120-V rms s resistor. If the resistor?	ignal at 60.0 Hz is applied rms value of the current i	l across a series con n this circuit is 0.60	nbination of a 30.0-m 00 A, what is the resis	nH inductor and a stance of the	634)		
Α) 268 Ω	Β) 80.0 Ω	C) 30.0 Ω	D) 143 Ω	Ε) 200 Ω			
635) A 120-V rms s 100-Ω resistor	ignal at 60 Hz is applied a . What is the rms value of	across a series comb the current in this	pination of a 30-mH i circuit?	inductor and a	635)		
A) 0.80 A	B) 1.6 A	C) 1.2 A	D) 1.8 A	E) 1.4 A			
636) A 120-V rms s 100-Q resistor	ignal at 60 Hz is applied a What is the rms value of	across a series comb the voltage across	pination of a 30-mH i the resistor?	inductor and a	636)		
A) 150 V	B) 60 V	C) 100 V	D) 120 V	E) 0.70 V			
637) A 120-V rms v resistor. If the circuit?	roltage is applied across a frequency of the power so	6.0-μF capacitor ar ource is 60 Hz, wha	nd a series combinati at is the rms value of	on of a $100-\Omega$ the current in the	637)		
A) 0.46 A	B) 0.76 A	C) 0.36 A	D) 0.56 A	E) 0.26 A			
638) A 120-V rms v unknown resi the resistor?	roltage at 60 Hz is applied stor. If the rms value of th	across a series con e current in the cire	nbination of a 20-μF cuit is 0.60 A, what is	capacitor and an s the resistance of	638)		
Α) 200 Ω	B) 180 Ω	C) 120 Ω	D) 150 Ω	Ε) 60 Ω			
639) A 120-V rms s 100-Ω resistor	ignal at 60.0 Hz is applied . What is the rms value of	l across a series cor the voltage across	nbination of a 40.0-m the inductor?	1H inductor and a	639)		
A) 100 V	B) 120 V	C) 119 V	D) 17.9 V	E) 0.700 V			
640) As shown in the and a capacitor across the cap $V_{\rm rms} = 80 \text{V} \bigcirc$	the figure, an ac source where whose reactance is 200 gradients acitor? $R = 100 \Omega$ $X_c = 200 \Omega$	nose rms voltage is Ω at the frequency θ	80 V is in series with of the source. What i	a 100-Ω resistor s the rms voltage	640)		
A) 72 V	B) 68 V	C) 70 V	D) 66 V	E) 74 V			
641) A 120-V rms v resistor. What	oltage at 1000 Hz is appli is the rms value of the cu	ed to a 2.0-mH ind rrent in this circuit	uctor, a 1.0-µF capac ?	itor, and a 100- Ω	641)		
A) 2.5 A	B) 0.68 A	C) 3.5 A	D) 0.48 A	E) 1.5 A			
642) A 120-V rms w resistor. If the inductor?	oltage at 1000 Hz is appli rms value of the current i	ed to an inductor, a n this circuit is 0.68	a 2.00-μF capacitor at 30 A, what is the indu	nd a 100-Ω uctance of the	642)		
A) 22.8 mH	B) 11.4 mH	C) 35.8 mH	D) 17.9 mH	E) 34.2 mH			
643) A 120-V rms v If the rms valu	643) A 120-V rms voltage at 1.0 kHz is applied to a 2.0-mH inductor, a 4.0-μF capacitor and a resistor. If the rms value of the current in this circuit is 0.40 A, what is the value of the resistor?						

645) In the circuit shown in the figure, the 60-Hz ac source has a voltage amplitude of 120 V, the capacitive reactance is ^{950 Ω}, the inductive reactance is ^{220 Ω}, and the resistance is ^{440 Ω}.
 What is the rms current in the circuit?

646) The figure shows a series ac circuit. The inductor has a reactance of 60 Ω and an inductance of 646) _____ 210 mH. A 90-Ω *R* and a capacitor *C* whose reactance is 160 Ω are also in the circuit, and the rms current in the circuit is 1.5 A. What is the rms voltage of the source?

647) The figure shows a series ac circuit. The inductor has a reactance of 80 Ω and an inductance of 647) _____ 200 mH. A 30-Ω resistor and a capacitor whose reactance is 150 Ω are also in the circuit, and the rms current in the circuit is 2.3 A. What is the capacitance of the capacitor?

648) The figure shows a series ac circuit. The inductor has a reactance of 50 Ω and an inductance of 648) . 200 mH. An 90-Ω resistor and a capacitor whose reactance is 150 Ω are also in the circuit, and the rms current in the circuit is 1.5 A. What is the voltage amplitude across the capacitor?

649) A series circuit has a 50-Hz ac source, a 20- Ω resistor, a 0.90-H inductor, and a 50- μ F capacitor, as shown in the figure. The rms current in the circuit is 2.4 A. What is the voltage amplitude of the source?

649)								
		A) 530 V	B) 750 V	C) 430 V	D) (640 V	E) 370 V	
	650)) A series circuit has a across a 120 V rms ac voltage across the inc	100- Ω resistor, a 0.2 source operating a ductor?	100-µF capacit t resonant free	tor, and a 2.0 quency. Wha	0-mH induc at is the rms	tor connected value of the	650)
		A) 533 V	B) 120 V	C) 170 V	D) \	54.0 V	E) 150 V	
	651)) A series circuit has a across a 120-V rms ac voltage across the caj	100- Ω resistor, a 0.2 c source operating a pacitor?	100-µF capacit it resonant fre	tor, and a 2.0 quency. Wha	0-mH induc at is the rms	tor connected value of the	651)
		A) 150 V	B) 170 V	C) 54.0 V	D) :	533 V	E) 120 V	
	652)) A series circuit has a across a 120-V rms ac inductor?	100- Ω resistor, a 0.2 source operating a	100-μF capacit at 1000/π Hz. V	tor, and a 2.0 What is the r	0-mH induc ms voltage a	tor connected cross the	652)
		A) 120 mV	B) 200 mV	C) 96.1 mV	D) 8	87.1 mV	E) 302 mV	
	653)	A series circuit consist circuit is connected to A) 0.62 A	sts of a 100-Ω resist o a 120-V rms, 60-H B) 0.52 A	or, a 10.0-µF c z power supp (capacitor, and bly. What is C) 0.72 A	d a 0.350-H i the rms cur	nductor. The rent in the circuit? D) 0.42 A	653)
	654)	A resistance of 55 Ω , reactance 30 Ω are co flows in this circuit?	a capacitor of capao nnected in series to	citive reactanc a 110-V rms,	ee 30 Ω, and a 60-Hz powe	an inductor o r source. W	of inductive /hat rms current	654)
		A) more than $2.0 A$	X	H	3) 2.0 A			
		C) less than 2.0 A		L) none of the	e given ansv	vers	
	655)	 A resistance of 55 Ω, reactance 30 Ω are conflows in this circuit? A) more than 2.0 A B) more than 4.0 A C) less than 2.0 A D) 4.0 A E) 2.0 A 	a capacitor of capac onnected in series to a but less than 4.0 A	citive reactanc a 110-V rms (e 30 Ω, and a	an inductor o	of inductive at rms current	655)
SHO	RT A	ANSWER. Write the	word or phrase that	best completes	s each statem	ent or answe	rs the question.	
	656)	A series circuit consist an ac voltage source when the circuit oper	of amplitude ^{250.0} rates at resonance.	V. Find the ri	12 resistor, a ms voltage ad	2.50-µF capa cross the cap	acitor, and 656) _	
	657)) A 120-mH inductor is range from 0.110 μF (a) What is the range (b) If the power supp	s in series with a 20 to 0.400 μF. of possible resonar bly is a 24-V rms sou	-Ω resistor an nce frequencie urce, what rms	d a variable s? s current flov	capacitor tha vs at resonar	at can 657) nce?	
MU	L TIP 658)	LE CHOICE. Choose) What is the resonanc resistor, and a 0.030 I A) 6.9 kHz	e the one alternative e frequency of a ser H inductor? B) 0.15 kHz	that best comp ties ac circuit c	pletes the stat consisting of C) 6 kHz	tement or ans a 40.0 μF caj	swers the question. pacitor, a 55-Ω D) 0.9 kHz	658)

659	59) A series ac circuit has a resonance frequency of 9.0 kHz. If the inductor in the circuit has a value of 2.0 H, and the resistance is 75 Ω , what is the capacitance of the circuit?				659)	
	A) 156 pF	B) 17.7 pF	C) 0.1	6 pF	D) 6.2 pF	
660)) An ac circuit has a what frequency d	a 100- Ω resistor in serie oes the circuit act like a	es with a 4.9-μF caj a pure resistance?	pacitor and a 700-n	nH inductor. At	660)
	A) 86 Hz	B) 1.9 MHz	C) 0.29 MHz	D) 12 MHz	E) 0.54 kHz	
661) A series <i>RLC</i> circu across a 120-V rm this circuit?	iit has a 100-Ω resistor s ac voltage source ope	, a 0.100-µF capacil erating at 1000/ π H	tor and a 2.00-mH Iz. What is the reso	inductor connected nant frequency of	661)
	A) 22.5 kHz	B) 11.3 kHz	C) 35.3 kHz	D) 17.9 kHz	E) 70.7 kHz	
662	2) What size capacite the resonant frequ	or should be placed in iency of the circuit is to	series with a 30-Ω o be 1.0 kHz?	resistor and a 40-n	nH inductive coil if	662)
	A) 4.5 μF	B) 6.0 μF	C) 2.0 µF	D) 0.63 μF	Ε) 3.3 μF	
SHORT 663	ANSWER. Write t β) A 50-Ω resistor is current in this circ	he word or phrase that placed in series with a cuit lag the applied vol	best completes each 40-mH inductor. <i>1</i> tage by exactly 45°	h statement or answ At what frequency ?	w ers the question. will the 663) _	
664	 A series circuit co source. The resista angle between the 	ntaining an inductor a ance is equal to 20.0 Ω e current the the applie	nd a resistor is driv and the inductance ed voltage?	ven by a 120-V 60-I e is 160 mH. What	Hz voltage 664) _ is the phase	
665	 5) An series circuit c inductor. (There is the phase angle be (a) Does the sourc (b) What is the vo 	onsists of an ac voltag s no capacitance in the etween the source volt re voltage lag or lead the ltage amplitude of the	e source, a resistor circuit.) The curren age and the curren ne current? source?	of resistance 770 Ω nt amplitude is 0.7 t has magnitude ²	0, and an 665) _ 0 A, and 20°.	
666	6) A series circuit co	nsists of an ac voltage	source of frequenc	y 60 Hz and source	e voltage 666) _	
	amplitude 345 V, and an inductor o (a) What must be	a resistor of resistance f inductance <i>L</i> . the value of <i>L</i> for the r	970Ω , a capacitor obase angle of the c	of capacitance $\frac{4!}{2}$	9 × 10 ⁻⁶ F,	
	(b) When <i>L</i> has th circuit?	e value calculated in p	art (a), what is the	current amplitude	in the	
MULTII 667	PLE CHOICE. Cho 7) A 10-Ω resistor is A) -37°	oose the one alternative in series with a 100-μF B) -4.7°	that best completes F capacitor at 120 H C) -82°	the statement or a lz. What is the ph D) +37°	nswers the question. ase angle? E) -53°	667)
668	3) A 40.0-mH induct phase angle at 200	or is connected in serie 00 Hz?	es with a 2000- Ω re	esistor in an ac circ	uit. What is the	668)
	A) -14.1°	B) -75.9°	C) 75.9°	D) 90.0°	E) 14.1°	
669) The phase angle o What is the induc	of a series <i>RL</i> ac circuit tive reactance of this ci	with a $100-\Omega$ resist ircuit?	tor and a 20.0-mH	inductor is 70.0°.	669)
	Α) 150 Ω	Β) 275 Ω	C) 200 Ω	D) 100 Ω	Ε) 175 Ω	
670)) The phase angle o	of a series <i>RL</i> ac circuit	with a 20.0-mH inc	ductor and a certai	n resistor at 1000	670)

Hz is 20.0°. What is the resistance in this circuit?

	Α) 245 Ω	Β) 145 Ω	C) 200 Ω	D) 345 Ω	Ε) 100 Ω	
671)) The phase angle in a 40°. What is the indu	series <i>RL</i> circuit at 1	.0 kHz with a 0.20-k ?	Ω resistor and a cer	rtain inductor is	671)
	A) 84 mH	B) 27 mH	C) 58 mH	D) 37 mH	E) 74 mH	
672)) A 20.0-mH inductor is the phase angle of	is connected in serie this circuit?	s with a 100- Ω resist	tor at 1.00 kHz in ar	n ac circuit. What	672)
	A) 51.5°	B) 90.0°	C) 38.5°	D) 0°	E) 45°	
673)) A 200-Ω resistor, a 40 rms source at 1.0 kH	0-mH inductor, and z. What is the phase	a 2.0-µF capacitor an angle of this circuit?	re connected in serie ?	es with a 120-V	673)
	A) 90°	B) 0°	C) 41°	D) 45°	E) 49°	
674)) The phase angle of a reactance of 100 Ω is	n <i>RLC</i> series ac circu 40.0°. What is the re	it with an inductive sistance of the resist	reactance of 200 Ω tor in this circuit?	and a capacitive	674)
	Α) 100 Ω	B) 119 Ω	C) 156 Ω	D) 265 Ω	Ε) 200 Ω	
675)) At 1.00 kHz, the phase resistance of 200 Ω as circuit?	se angle of an <i>RLC</i> so nd a certain capacito	eries circuit with an r is 40.0°. What is th	inductive reactance te capacitance of the	e of 200 Ω, a e capacitor in this	675)
	A) 5.95 μF	B) 1.95 μF	C) 3.95 µF	D) 4.95 μF	Ε) 2.95 μF	
676)) At 1.0 kHz, the phase resistance of 100 Ω, a A) 62 mH	e angle of an <i>RLC</i> sen and a certain inducto B) 210 mH	ries circuit with a ca r is 40°. What is the C) 20 mH	pacitive reactance o inductance in this o D) 12 mH	of 40 Ω, a circuit? E) 120 mH	676)
677)) A series ac circuit ha If the frequency of th current?	s a resistance of 2.0 k le alternating curren	xΩ, a capacitance of t is 4.0/π kHz, by wl	8.0 μ F, and an indunat angle does the v	octance of 9.0 H. roltage lead the	677)
	A) +36 rad	B) +3.1 rad	C) -3.1 rad	D) +1.5 rad	E) -1.8 rad	
678)	A series ac circuit has between the current 5.0 μF and an induct A) 7.1 kΩ	s voltage supplied to and the voltage of m ance of ^{0.050 H} , find B) 0.36 kΩ	o it at a frequency of agnitude ^{0.70} rad. I the resistance of th C) 1.41	19.0 kHz with a pl If the circuit has a c ne circuit. kΩ D	hase difference apacitance of) 24 kΩ	678)
		, 	, ,	,	, , , , , , , , , , , , , , , , , , , ,	
679	120 Hz. What is the p $(\Delta) +125^{\circ}$	s in series with a 100 phase angle? B) +77.6°	C 90.0°	$D_{-12} 5^{\circ}$	E) -77.6°	679)
	11) 12.0	D) 177.0	C) 90.0	D) -12.5	L) -77.0	
680)) A capacitor with a ca across an ac source o	pacitive reactance of f frequency 60.0 Hz.	f 40.0 Ω is connected What is the phase a	l in series with a 10 ngle?	0- Ω resistor	680)
	A) 90.0°	B) +68.2°	C) -21.8°	D) +21.8°	E) -68.2°	
681)) A 120-V rms voltage circuit is 0.60 A, and	at 60 Hz is applied a it leads the voltage b	across an <i>RC</i> circuit. by 60°. What is the r	The rms value of the sistance in this circ	ne current in the cuit?	681)
	Α) 100 Ω	Β) 150 Ω	C) 60 Ω	D) 120 Ω	Ε) 200 Ω	
682)) A 120-V rms voltage circuit is 0.60 A, and A) 17 μF	at 60 Hz is applied a it leads the voltage b B) 13 μF	across an <i>RC</i> circuit. by 60°. What is the c C) 16 μF	The rms value of th apacitance in this ci D) 15 μF	ne current in the rcuit? Ε) 14 μF	682)

683) In the circuit shown in the figure, the 60-Hz ac source has a voltage amplitude of 120 V, the capacitive reactance is $^{760 \Omega}$, the inductive reactance is $^{310 \Omega}$, and the resistance is $^{480 \Omega}$. What is the phase angle?

684) The figure shows a series ac circuit. The inductor has a reactance of 90 Ω and an inductance of 684) _____ 190 mH. A 70-Ω resistor and a capacitor whose reactance is 150 Ω are also in the circuit, and the rms current in the circuit is 1.9 A. What is the phase angle of the circuit?

683) _

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

685)	A series circuit consis	ts of an ac voltage s	source of voltage am	plitude V and fre	equency 60 685) _	
	Hz, a resistor of resist must the source volta	ance 662Ω , and a ge amplitude V be	capacitor of capacitation for the average electr	nce 7.4×10^{-6} F.	What umed in	
	the resistor to be 436 v	watts? (There is no :	inductance in the cire	cuit.)		
MULTIPI	LE CHOICE. Choose	the one alternative (that best completes th	e statement or ar	nswers the question.	
686)	A series circuit contai source. At what frequ power transferred fro	ns a 20- Ω resistor, a ency should the po m the driving source	a 200-mH inductor, a wer source drive the ce?	10-µF capacitor	, and an ac power to have maximum	686)
	A) 0.96 kHz	B) 0.28 kHz	C) 0.45 kHz	D) 0.11 kHz	E) 0.17 kHz	
687)	A series ac circuit con and a peak current of of the circuit?	taining a resistor, in 4.00 A. If the curre	nductor, and a capac ent lags the voltage b	itor has a peak v y ^{22.0°,} what is	oltage of ¹⁵⁷ V the average power	687)
	A) 582 W	B) 254 W	C) 291 V	V	D) 127 W	
688)	A series ac circuit has inductance, and a resi	a reactance of 14 k stance of $28 \text{ k}\Omega$. W	Ω due to its capacitation due to its capacitation due to its capacitation due to the power factor.	ance, a reactance tor of this circuit	of $6 k\Omega$ due to its ?	688)
	A) 0.28	B) 0.48	C) 0.96		D) 1.04	
689)	A series ac circuit has circuit is $51k\Omega$, the c determine the average	a peak current of ^a apacitance of the ci	$^{3.0 \text{ A}}$ with a frequence rcuit is $^{15 \mu\text{F}}$, and the state of the second	cy of ^{81 kHz.} If the inductance of	the resistance of the the circuit is ^{23H} ,	689)
	A) 69,000 W	B) 230,000 W	C) 37,00	0 W	D) 690,000 W	
690)	A 120-V rms voltage a impedance of this circ	at 60.0 Hz is applied tuit is 200 Ω , what i B) 36.0 W	l across a capacitor a s the average power C) 100 W	nd a 100-Ω resis of this circuit? D) 278 W	tor. If the E) 200 W	690)
	11,72.011	2,00.0 11	C) 100 11	2,2,0,1	L) 200 II	

691) The circuit power factor of an <i>RC</i> circuit is 0.620. The rms value of the ac voltage applied to this					691)	
signal i	s 120 V and th	e impedance is 200 s	2. What is the average C) 80.2 W	ge power of this 0.620 W	S circuit	
A) 12	24 VV	D) 00.0 VV	C) 09.2 W	D) 0.820 W	E) 44.0 VV	
692) A serie 120-V r	s circuit has a ms ac source a	100-Ω resistor, 2.00- t 1000/π Hz. What i	nH inductor and a 4 s the power dissipat	4.00-μF capacito ed by the circui	r connected across a t?	692)
A) 91	.8 W	B) 184 W	C) 18.6 W	D) 58.4 W	E) 180 W	
693) A serie a 120-V	s circuit has a rms ac source	100- Ω resistor, 4.00- e at the resonance free	mH inductor and a (equency. What is the).100-µF capacit 2 power dissipat	or connected across red by the circuit?	693)
A) 10	50 VV	D) 120 VV	C) 45.8 W	D) 144 W	E) 100 W	
694) What is reactan supply	the power ou ce, and 10.0 $Ω$?	tput in an ac series o of capacitive reacta	tricuit with 12.0 Ω of nce, when the circuit	f resistance, 15.0 t is connected to) Ω of inductive a 120-V rms power	694)
A) 6.	00 kW	B) 4.49 kW	C) 3.21 k	κW	D) 1.02 kW	
695) The ph A) 0.	ase angle of ar 55	ac circuit is 63°. W B) 0.45	/hat is the power fac C) 0.11	ctor?	D) 0.89	695)
696) An ac s	eries circuit ha	as an impedance of 6	$0~\Omega$ and a resistance	e of 30 Ω. Wha	t is the power factor	696)
A) 1.	4	B) 0.50	C) 0.71		D) 1.0	
697) What is	the power fac	ctor for a series ac cir	cuit containing a 50	- Ω resistor, a 10	-μF capacitor, and a	697)
0.45-H A) 0.	46	B) 1.0	C) 0.79		D) 0.00	
698) A serie	s <i>RLC</i> circuit h	as a 100- Ω resistor, 2	2.0-mH inductor and	d a 4.0-μF capac	itor connected	698)
	a 120-v rins ac 84	B) 0.74	C 0.64	D = 0.54	F) 0.94	
A) 0.	04	D) 0.74	C) 0.04	D) 0.34	E) 0.74	
699) An ac s circuit i	ignal is applie is 0.40, what is	d across a 40-mH in the frequency of the	ductor and a $100-\Omega$ matrix and a signal?	resistor. If the p	ower factor of this	699)
A) 91	l0 Hz	B) 200 Hz	C) 600 Hz	D) 160 Hz	E) 410 Hz	
700) The po	wer factor of a bedance of the	n ac <i>RL</i> circuit with	a 100- Ω resistor and	a certain induc	tor is 0.60. What is	700)
A) 10	0 Ω	B) 340 Ω	C) 60 Ω	D) 170 Ω	Ε) 85 Ω	
701) In the c	ircuit shown i	n the figure, the 60-I	Hz ac source has a ve	oltage amplitud	e of 120 V, the	701)
capacit	ive reactance i	s $\frac{760 \Omega}{2}$ and the ind	luctive reactance is	280Ω . What is	the resistance <i>R</i> if	
the pov	ver factor is 0.8 <i>C</i>	30?				
60 Hz		R				
A) 36	L 60 Ω	B) 640 Ω	C) 510 Ω	D) 580 Ω	Ε) 430 Ω	

702) What is the power factor of an *RLC* ac series circuit with an inductive reactance of 174 Ω , a 702) _____ capacitive reactance of 60 Ω and a resistance of 0.10 k Ω ?

A) 0.29	B) 0.76	C) 0.56	D) 0.66	E) 0.46

703) A series circuit has a 50-Hz ac source, a 50-Ω resistor, a 0.40-H inductor, and a 40-µF capacitor, 703) _____ as shown in the figure. The rms current in the circuit is 2.7 A. What is the power factor of the circuit?

704) A certain ac signal at 1000 Hz is applied across an inductor and a 100- Ω resistor. If the power704) _____factor of the circuit is 0.400, what is the impedance of this circuit?A) 200 Ω B) 250 Ω C) 300 Ω D) 100 Ω E) 150 Ω

1) D 2) D 3) C 4) A 5) B 6) D 7) A 8) A 9) (a) 1.9 × 10⁵ C (b) 2.1 MN 10) D 11) E 12) C 13) C 14) D 15) 12 cm 16) C 17) B 18) B 19) A 20) E 21) E 22) C 23) 0.072 N, toward the right 24) 5.4 µN at 56° above -*x*-axis 25) D 26) C 27) B 28) D 29) A 30) D 31) A 32) (a) 7.5×10^{13} electrons (b) $q_1 = +600 \text{ nC}, q_2 = -640 \text{ nC}$ 33) 0.41 m 34) 20.3 kg 35) 110 N toward the empty corner 36) C 37) 0.90 kN/C downward 38) E 39) D 40) E 41) B 42) D 43) (a) 7.2×10^{-15} N to the left (b) 24 km/s 44) E 45) C 46) B 47) B 48) C 49) A 50) C 51) B

52) B 53) 1.57 \times 107 N/C, to the left parallel to the line connecting the two charges 54) (a) 2.60 × 10¹⁰ electrons (b) zero 55) 120 nC 56) 4.8×10^{-19} electrons 57) (a) 12.0 μC (b) upper plate 58) (a) $\pm 67 \ \mu C/m^2$ (b) 7.6×10^6 N/C (unchanged) 59) D 60) 1.53×10^9 electrons 61) A 62) E 63) (a) 8.3 × 106 N/C (b) 0 N/C 64) (a) 6.4×10^3 N/C (b) 0 N/C (c) 2.2×10^2 N/C 65) D 66) D 67) D 68) C 69) C 70) A 71) A 72) D 73) E 74) E 75) C 76) B 77) B 78) D 79) C 80) C 81) A 82) D 83) B 84) A 85) D 86) E 87) E 88) B 89) D 90) A 91) B 92) E 93) A 94) 340,000 V 95) C 96) D 97) E 98) 2.1 m 99) A 100) -5 3.6 × 10 J 101) B

15 mj		
D		
А		
С		
А		
В		
B		
C		
B		
80.4 mI		
C		
C		
D		
66 7 N/C		
B		
B		
D ^		
A 8 61m		
ο.01 μΠΓ Β		
В 		
A C		
C		
D		
D		
\mathbf{D}	(1) 220 M	
(a) -160 V	(b) $320 V$	
(a) 8 V/m	(b) 8 V/m	
В		
A		
В		
A		
В		
E		
E		
D		
В		
А		
В		
(a) 1.3 pF	(b) 16 pC	(c) 12 kN/C
(a) 0.42 μC	(b) 2.5 μJ	
(a) 432 µJ	(b) 72.0 μC	
С		
С		
А		
D		
E		
1.3 μJ		
С		
В		
С		
С		
В		
	D A C A B B C B 8 80.4 mJ C C D 66.7 N/C B B A 8.61 μ m B A C C D B D (a) -160 V (a) 8 V/m B A C C D B D (a) -160 V (a) 8 V/m B A B A B A B A B A B A B A B A B A B	D A C A B B C B 80.4 mJ C C D 66.7 N/C B B A A 8.61 μ m B A 8.61 μ m B A C C D 8 D (a) -160 V (b) 320 V (a) 8 V/m (b) 8 V/m B A C C D B D (a) -160 V (b) 320 V (a) 8 V/m (b) 8 V/m B A B A B A B A B A B A B A B A B A B A B A B A B A B C C C D B D (a) -160 V (b) 320 V (a) 8 V/m B A B A B A B A B A B C C C D B A B C C C D B A B C C C D B A B C C C D B A B C C C D B A B C C C D B A B C C C C D C C C D B C C C C D B C C C C D B C C C D B C C C D B C C C C D C C C C D C C C C C C C C C C C C C

154) (a) 75 µF (b) 10 V 155) (a) 19 µC (b) 3.2 V 156) C 157) A 158) A 159) B 160) C 161) C 162) B 163) 440 V 164) B 165) D 166) 9.2 × 10-22 J/m³ 167) D 168) $1.5 \times 104 \text{ J/m}^3$ 169) 1.86 × J/m³ 170) (a) 1200 C (b) 7.5 × 1021 171) 0.109 A 172) A 173) A 174) D 175) D 176) C 177) B 178) D 179) A 180) C 181) A 182) 16 V 183) 43.6 Ω 184) D 185) B 186) C 187) D 188) B 189) 25 Ω 190) 2.0 Ω 191) 2.5 mm (b) $1.7 \times 10^{-8} \Omega \cdot m$ 192) (a) 6.0 Ω 193) A 194) C 195) A 196) C 197) A 198) B 199) B 200) D 201) D 202) C 203) B 204) B 205) B
206) B 207) D 208) B 209) A 210) A 211) D 212) (a) 17.9 V (b) 44.7 mA 213) (a) 11.7 A (b) 10.3 Ω 214) (a) 16 C (c) 8.3 × 1017 (b) 48 J 215) (a) 2.1 A (c) 6.0 kWh (b) 58 Ω 216) C 217) B 218) A 219) C 220) A 221) D 222) B 223) B 224) A 225) D 226) A 227) A 228) D 229) B 230) A 231) C 232) B 233) B 234) A 235) C 236) A 237) D 238) A 239) B 240) A 241) C 242) C 243) B 244) C 245) D 246) A 247) B 248) C 249) D 250) 2.3 J 251) C 252) C 253) B 254) A 255) (a) 5.3 mV (b) 7.8 mV (b) 12.0 µF 256) (a) 2.7 µF 257) (a) 1.98 µF (b) 20.00 µF

258) (a) 1.50 V (b) 13.5 µJ 259) C 260) D 261) D 262) E 263) D 264) (a) 120 µC (b) 120 µC (b) 180 µC 265) (a) 30 V 266) A 267) D 268) C 269) (a) 4.0 µF (b) 64 µF (c) 6.4 µF (b) 3.75 V 270) (a) 37.5 µC 271) (a) 1.0 V (b) 3.0 V 272) C 273) D 274) A 275) C 276) E 277) B 278) E 279) B 280) E 281) A 282) (a) 6.56 mJ (b) 1.61 mJ 283) 0.80 Ω, 1.5 Ω, 2.0 Ω, 3.3 Ω, 5.0 Ω, 8.0 Ω 284) 3.0 Ω and 6.0 Ω 285) 303 Ω 286) 16 Ω 287) C 288) C 289) B 290) A 291) B 292) D 293) B 294) E 295) B 296) E 297) A 298) C 299) 243 W 300) (a) 150 V (b) 11 Ω 301) D 302) C 303) D 304) D 305) E 306) E 307) (a) -1.2 V (the terminal polarity is opposite from the polarity of the internal emf) 308) (a) 0.40 A (b) 4.0 A 309) (a) 0.83 A (b) 0.53 A

(b) 8.4 V

```
310) (a) 2.8 A
                   (b) 1.2 A
                                  (c) 0.90 A
311) (a) 0.83 A in each; 120 V for each; 100 W in each (200 W total)
     (b) 0.42 A in each; 60 V for each; 25 W in each (50 W total)
                     (b) I<sub>1</sub> = 0.63 A, I<sub>2</sub> = 0.45 A, I<sub>3</sub> = 0.18 A
312) (a) 9.6 Ω
313) C
314) C
315) C
316) A
317) C
318) A
319) D
320) B
321) D
322) C
323) C
324) A
325) A
326) A
327) B
328) A
329) C
330) B
331) B
332) A
333) A
334) A
335) B
336) C
337) E
338) B
339) C
340) B
341) C
342) A
343) 8.4 W
344) A
345) C
346) D
347) D
348) \varepsilon_1 = 28 \text{ V}, \varepsilon_3 = 44 \text{ V}
349) A
350) A
351) A
352) I_1 = 0.25 \text{ A}, I_2 = 0.12 \text{ A}
353) (a) V_1 = 12 V, V_2 = 15 V
                                      (b) 2.5 V
354) B
355) C
356) B
357) D
358) B
359) A
360) C
```

361) A 362) D 363) C 364) C 365) D 366) E 367) C 368) E 369) 13 nF 370) A 371) B 372) E 373) C 374) E 375) C 376) D 377) (a) 0.74 A (b) 1.3 mC 378) 2.6 µF 379) (a) 19 s (b) 4.4 V 380) 15 × 10-6 F (b) 458 µC 381) (a) 2.50 A 382) C 383) D 384) 22 Ω 385) A 386) D 387) B 388) (a) 2.2 mΩ (b) 15 kΩ 389) 9.6 × 10-16 N 390) 1.3×10^{-20} N, toward the east 391) D 392) 2.3 × 10-18 N 393) D 394) -2 1.2×10 T, +z direction 395) C 396) D 397) E 398) C 399) B 400) C 401) A (b) 0.22 µs 402) (a) 11 mm 403) 0.083 T, into the paper 404) C 405) C 406) E 407) C 408) C 409) B 410) D 411) D

412) D 413) 0.066 N, -y direction 414) B 415) C 416) C 417) D 418) E 419) A 420) E 421) B 422) A 423) A 424) E 425) B 426) E (b) 5.3 × ¹⁰⁻⁵ T 427) (a) 13×10^{-5} N/m, repulsive 428) 0.50 A, from bottom to top 429) D 430) C 431) E 432) 0.45 A · m² 433) (a) 17 A · m² (b) 0.11 m² 434) C 435) 0.64 N · m 436) D 437) E 438) C 439) D 440) E 441) A 442) C 443) C 444) E 445) D 446) 39° 447) C 448) 5.0 kA 449) -6 $B = 4.7 \times 10$ T, out of the plane of the paper. 450) D 451) A 452) D 453) C 454) E 455) B 456) D 457) B 458) E 459) D 460) D 461) D 462) E

463) A 464) B 465) 2.0 mT 466) 251 µT 467) B 468) B 469) C 470) B 471) C 472) D 473) D 474) A 475) B 476) A 477) D 478) D (b) 4.4×10^{-25} kg ⁴⁷⁹⁾ (a) 10. km/s 480) B 481) D 482) C 483) B 484) B 485) B 486) C 487) 9.4 V 488) 2.88 V 489) (a) $0.065 \text{ T} \cdot \text{m}^2$ (b) 6.5 V -4 490) 9.6×10 A, counterclockwise 491) E 492) D 493) A 494) D 495) A 496) B 497) B 498) C 499) D 500) C 501) A 502) A 503) A 504) B 505) D 506) A 507) B 508) -1 (b) 2×10 N (a) counterclockwise 509) (a) 0.174 V (b) 104. m (c) no polarity change 510) 0.32 mV 511) A 512) E

513) B 514) B 515) E 516) C 517) C 518) B 519) C 520) 64 521) A 522) D 523) D 524) B 525) B 526) D 527) C 528) E 529) (a) 240 V (b) 0.40 A 530) B 531) C 532) C 533) E 534) B 535) A 536) B 537) C 538) 1 to 20 539) (a) 0.15 A (b) 1.0:24. (c) 1:1 for ideal transformer (c) 2.6 W 540) (a) 1200 (b) 22 Ma 541) 600 V, 0.40 A 542) 22 543) C 544) B 545) A 546) D 547) 0.24 A 548) C 549) E 550) B 551) B 552) E 553) (a) 1.2 H (b) point *b* 554) D 555) B 556) C 557) D 558) D 559) (a) 1.9 A (b) 2.6 A 560) A 561) C 562) D 563) B 564) A

565) A 566) C 567) C 568) A 569) D 570) E 571) D 572) B 573) D 574) (a) 60 Hz (b) 170 V (120 V is the rms voltage) 575) 0.833 A rms, 1.18 A amplitude 576) 2.4 kW 577) 2.1 A 578) (a) 0.80 A (b) 0.57 A (b) 1.25 A (c) 96.0 Ω 579) (a) 1.77 A 580) 90 W 581) C 582) B 583) C 584) A 585) D 586) B 587) C 588) D 589) 0.13 kHz 590) 0.15 MHz 591) (a) 27 kΩ (b) 4.5 mA (c) 18 mA 592) (a) 75.4 Ω (b) 1.59 A (c) 0.398 A 593) 70 µF 594) E 595) A 596) C 597) D 598) A 599) D 600) D 601) D 602) C 603) D 604) B 605) C 606) C 607) A 608) B 609) A 610) A 611) B 612) C 613) B 614) A 615) C 616) A

617) D 618) C 619) B 620) A 621) A 622) B 623) C 624) D 625) A 626) D 627) C 628) C 629) C 630) E 631) D 632) D 633) C 634) E 635) C 636) D 637) E 638) D 639) D 640) A 641) B 642) C 643) B 644) A 645) E 646) C 647) C 648) C 649) B 650) C 651) B 652) C 653) C 654) B 655) E 656) 265 V 657) (a) 0.726 kHz to 1.39 kHz (b) 1.20 A 658) B 659) C 660) A 661) B 662) D 663) 0.20 kHz 664) The current lags by 72° 665) (a) The source voltage leads the current. (b) 570 V 666) (a) 1.4 H (b) 0.356 A 667) E 668) E

669) B 670) D 671) B 672) A 673) C 674) B 675) D 676) C 677) D 678) A 679) D 680) C 681) A 682) D 683) B 684) C 685) 860 V 686) D 687) C 688) C 689) B 690) B 691) E 692) D 693) D 694) D 695) B 696) B 697) A 698) C 699) A 700) D 701) B 702) D 703) C

704) B