The Basic Maths you need are listed below. This file is just a summary

- Rearranging equations.
- Scientific notation.
- Significant figures.
- Trigonometric functions.
- Vectors
- Understanding graphs
- Simultaneous equations.
- Introduction to calculus.

Rearranging equations.

Rearranging equation

There is only one thing to remember

DO THE SAME THING

BOTH SIDES
This will keep the equation balanced

$$
\begin{gathered}
a+b=c+d \\
a+b-d=c+d-d \\
a+b-d=c
\end{gathered}
$$

$$
\begin{aligned}
2 x+y & =4 \\
2 x & =4-y \\
x & =\frac{4-y}{2}
\end{aligned}
$$

Rearrange the equation to make v the subject

This means
we want to
rearrange
the
equation so
it says
$v=$

$$
\begin{aligned}
& \quad e=\frac{3 v+t}{5} \\
& \text { so } \begin{array}{l}
x 5 \\
\text { to } \\
\text { so } \\
5 e=3 v+t \\
-t \quad-t \\
5 e-t=3 v \\
\div 3 \\
\frac{5 e-t}{3}=v
\end{array} \\
& \text { Our answer should say } \ldots v=\frac{5 e-t}{3}
\end{aligned}
$$

- Aformula is an equation that expresses the relationship between two or more related quantities.
- As the equations get harder and longer we have to be more and more careful about what we do first. Always though we are just doing the same thing to both sides of the equation. Whatever that is.

Solve for e

$$
C=\frac{2 e A k_{1} k_{2}}{d\left(k_{1}+k_{2}\right)}
$$

We multiply both sides by $d\left(k_{1}+k_{2}\right)$.

$$
C d\left(k_{1}+k_{2}\right)=2 e A k_{1} k_{2}
$$

Divide both sides by $2 \boldsymbol{A} \boldsymbol{k}_{1} \boldsymbol{k}_{2}$.

$$
\frac{C d\left(k_{1}+k_{2}\right)}{2 A k_{1} k_{2}}=e
$$

Scientific notation.

Scientife Mo tation

$$
93,000,000=9.3 \times 10^{7} \text { miles }
$$

these two digits are retained

p- ingtruction:move decimal point.
9.9×10^{7} miles seven (7) digits to the right

> exprotet
> 9.x momies
> dethat pitt
> expontial piart:

Significant figures.

Accuracy:
the number of significant digits a number has.
Precision:
the decimal position of the last significant digit.

When adding or subtracting approximate numbers, keep as many decimal places in your answer as contained in the number having the fewest decimal places.

When multiplying 2 or more approximate numbers, round the result to as many digits as are in the factor having the fewest significant digits.

Eg

204I. 2 has 5 significant figures and I decimal place
0.006 has I significant figure and 3 decimal places

So to add them
$2041.2+0.006=204$ I. 206 BUT the fewest decimal places is I (204I.2) so our answer is quoted to 1 decimal place $=$ 2041. 2

Multiply them
204 I. 2 * 0.006 = I2.2472 BUT 0.006
has only I significant digit so the answer is
$=10$

THIS IS FOR APPROXIMATE NUMBERS.

Trigonometric functions.

sine $\alpha=\frac{\text { Opposite }}{\text { Hypotenuse }}$
cosine $\alpha=\frac{\text { Adjacent }}{\text { Hypotenuse }}$
tangent $\alpha=\frac{\text { Opposite }}{\text { Adjacent }}$

SOH CAH TOA

Vectors

1. Resolve the vectors into perpendicular components.
2. Add the x-components of all vectors to get the x-component of the resultant R_{x}
3. Add the y-components of all vectors to get the y-component of the resultant R_{y}
4. Find the magnitude of the resultant

$$
R=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}
$$

5. Find the direction of the resultant

$$
\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
$$

- Resolve into x and y

X-Components:
For Vector A:
$50 \cos 20^{\circ}=46.98$ (2dp)
$35 \cos 110^{\circ}=-11.97(2 \mathrm{dp})$

- Add all x, add all y
- Find the resultant
- Find the angle

$$
=35.01
$$

$$
\text { = } 49.99
$$

We can now solve for R and $\boldsymbol{\theta}$, using our formulae.

$$
\begin{gathered}
R=\sqrt{x^{2}+y^{2}}=\sqrt{35.01^{2}+49.99^{2}}=61.03 \text { metres } \\
\theta=\operatorname{Tan}^{-1}\left(\frac{y}{x}\right)=\left(\frac{49.99}{35.01}\right)=54.99^{\circ}
\end{gathered}
$$

So our 2 vectors are resolved for the resultant vector $\overrightarrow{\mathbf{R}}$

HOWTO FIND THE DIRECTION.

(positive angle from positive x axis) If not in quadrant I or IV

$$
\alpha=\tan ^{-1}\left(\frac{|y|}{|x|}\right)
$$

$$
\begin{aligned}
& \theta=\alpha(Q \mathrm{I}) \\
& \theta=180^{\circ}-\alpha(\mathrm{Q} \text { II }) \\
& \theta=180^{\circ}+\alpha(\mathrm{Q} \text { III }) \\
& \theta=360^{\circ}-\alpha(\mathrm{Q} \text { IV })
\end{aligned}
$$

Understanding graphs

Graphs

From equations to graph

If $\quad a=\frac{\Delta V}{\Delta t}$
I know if I plot \checkmark agunst t then slope is the acceleration

If $y=$ velours
$x=$ time

$$
\text { slope }=\frac{\Delta v}{\Delta t}=\text { acceleration }
$$

Simultaneous equations.

1) Solve the system using substitution

$$
\begin{aligned}
& x+y=5 \\
& y=3+x
\end{aligned}
$$

The second equation is already solved for y !

$$
\begin{gathered}
x+y=5 \\
x+(3+x)=5 \\
2 x+3=5 \\
2 x=2 \\
x=1
\end{gathered}
$$

Introduction to calculus.

What is calculus?

Integration
finds the $\quad x=\int v d t$ area

Differentiation finds the slope

$$
V=\frac{\Delta x}{\Delta t}
$$

Instantaneous

$$
\begin{aligned}
V & =\operatorname{limit}_{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \\
& =\frac{\partial x}{\partial t}
\end{aligned}
$$

With calculus you do not have to meas we gradients and areas but car calculate time directly

