Concept led approach.

Topic 1: Working as a Physicist

Students should:

- 1. know and understand the distinction between base and derived quantities and their SI units
- 2. be able to demonstrate their knowledge of practical skills and techniques for both familiar and unfamiliar experiments
- 3. be able to estimate values for physical quantities and use their estimate to solve problems
- 4. understand the limitations of physical measurement and apply these limitations to practical situations
- 5. be able to communicate information and ideas in appropriate ways using appropriate terminology
- 6. understand applications and implications of science and evaluate their associated benefits and risks
- 7. understand the role of the scientific community in validating new knowledge and ensuring integrity
- 8. understand the ways in which society uses science to inform decision making

Topic 2: Mechanics

9. be able to use the equations for uniformly accelerated motion in one dimension:

$$s = \frac{(u+v)t}{2}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

- 10. be able to draw and interpret displacement-time, velocity-time and acceleration-time graphs
- 11. know the physical quantities derived from the slopes and areas of displacement-time, velocity-time and acceleration-time graphs, including cases of non-uniform acceleration and understand how to use the quantities
- 9) http://hyperphysics.phy-astr.gsu.edu/hbase/mot.html#motcon
- 10 & 11) http://hyperphysics.phy-astr.gsu.edu/hbase/acons.html#c1
- 12. understand scalar and vector quantities and know examples of each type of quantity and recognise vector notation
- 13. be able to resolve a vector into two components at right angles to each other by drawing and by calculation
- 14. be able to find the resultant of two coplanar vectors at any angle to each other by drawing, and at right angles to each other by calculation
- 12 & 13 & 14) http://hyperphysics.phy-astr.gsu.edu/hbase/vect.html#veccon
 - 15. understand how to make use of the independence of vertical and horizontal motion of a projectile moving freely under gravity
 - 16. be able to draw and interpret free-body force diagrams to represent forces on a particle or on an extended but rigid body
- 15) http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html#tracon
- 16) http://hyperphysics.phy-astr.gsu.edu/hbase/freeb.html#fb

17. be able to use the equation $\sum F=ma$, and understand how to use this equation in situations where m is constant (Newton's second law of motion), including Newton's first law of motion where a=0, objects at rest or travelling at constant velocity

Use of the term terminal velocity is expected

- 18. be able to use the equations for gravitational field strength $g = \frac{F}{m}$ and weight W = mg
- 19. CORE PRACTICAL 1: Determine the acceleration of a freely-falling object.
- 20. know and understand Newton's third law of motion and know the properties of pairs of forces in an interaction between two bodies
- 17) http://hyperphysics.phy-astr.gsu.edu/hbase/Newt.html#nt2cn
- 18) http://hyperphysics.phy-astr.gsu.edu/hbase/mass.html#wgt
- 19) http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html#ffall
- 20) http://hyperphysics.phy-astr.gsu.edu/hbase/Newt.html#nt3
 - 21. understand that momentum is defined as p = mv
 - 22. know the principle of conservation of linear momentum, understand how to relate this to Newton's laws of motion and understand how to apply this to problems in one dimension
- 21) http://hyperphysics.phy-astr.gsu.edu/hbase/mom.html#mom
- 22) http://hyperphysics.phy-astr.gsu.edu/hbase/conser.html#conmom
 - 23. be able to use the equation for the moment of a force, moment of force = Fx where x is the perpendicular distance between the line of action of the force and the axis of rotation
 - 24. be able to use the concept of centre of gravity of an extended body and apply the principle of moments to an extended body in equilibrium
- 23) http://hyperphysics.phy-astr.gsu.edu/hbase/torq.html#torq
- 24) http://hyperphysics.phy-astr.gsu.edu/hbase/handb.html#bal

- 25. be able to use the equation for work $\Delta W = F \Delta s$, including calculations when the force is not along the line of motion
- 26. be able to use the equation $E_k = \frac{1}{2}mv^2$ for the kinetic energy of a body
- 27. be able to use the equation $\Delta E_{grav} = mg\Delta h$ for the difference in gravitational potential energy near the Earth's surface
- 28. know, and understand how to apply, the principle of conservation of energy including use of work done, gravitational potential energy and kinetic energy
- 29. be able to use the equations relating power, time and energy transferred or work done $P=\frac{E}{t}$ and $P=\frac{W}{t}$
- 25) http://hyperphysics.phy-astr.gsu.edu/hbase/wcon.html
- 26) http://hyperphysics.phy-astr.gsu.edu/hbase/ke.html#ke
- 27) http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#pe
- 28) http://hyperphysics.phy-astr.gsu.edu/hbase/conser.html#coneng
- 29) http://hyperphysics.phy-astr.gsu.edu/hbase/powcon.html