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18.1 Electric Potential Energy

Remember the equations from mechanics and the
fact that the work done is change in energy

W,., =Fscos(®) = U, —Up, =W,.; =AKE



W,., =Fscos(®) = U, —U, =W, = AKE

Apply this to electric fields

Work done on charge g by the constant electric
Test charge force between the plates: W, = g'Es
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4 FIGURE 18.2 A test charge g" moves from
point @ to point b in a uniform electric field.



Comparing
gravitational and
electrical
conservative
forces

Object moving in a
uniform gravitational
field:

W= —QAU,n, = mgh
R
—E %]
“ “
w = mg
h
(a)

Charge moving in
a uniform electric

freld:
W = —_"l.li'llr._ — -'.l|'.lr:-."-'

+ + + o+

I
E

-

(h)

A FIGURE 18.1 Because electric and gravita-
tional forces are conservative, work done by
either can be expressed in terms of a potential

energy.
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Positive charge moves in the direction of E: Positive charge moves opposite to E:

= Field does positive work on charge; = Field does negative work on charge;
= U decreases. ¥ = Ul increases. ¥
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A FIGURE 18.3 The work done by an electric field on a positive charge moving (a) in the
direction of and (b) opposite to the electric field.
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MNegative charge moves in the direction of E: MNegative charge moves opposite to E:

* Field does negative work on charge; = Field does posifive work on charge;
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A FIGURE 18.4 The work done by an electric field on a negative charge moving (a) in
the direction of and (b) opposite to the electric field.



examPLE 18.1 Work in a uniform electric field

Two large conducting plates separated by 6.36 mm carry charges of equal magnitude and opposite sign,
creating a uniform electric field with magnitude 2.80 % 10° N/C between the plates. An electron moves
from the negatively charged plate to the positively charged plate. How much work does the electric field do
on the electron?

AV KA A A
E | T
£=2.80 xlo° Nfe

a =636 mm

p 4
r_E

H:F-—EFI

s
A A R f_:?//i/;//_,zf

SOLVE The force and displacement are parallel; the work W
done by the electric-field force during a displacement of magni-

tude dis W = F.dcosd with d = 0, so

W= F,d = eEd
= (1.60 % 1077 C)(2.80 x 10°N/C)(6.36 x 1077 m)
= 2.85 x 1078 7.




Potential Energy of Point Charges

It’s useful to calculate the work done on a test charge q’ when it moves in the
electric field caused by a single stationary point charge g.

Point charge g Test charge g°
{(a) Test charge ,# \
moves from a to b. Jg f]'T-___ }___.r __,_G.__l__ .L'__}_b *
F | Ar
X |
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charge as a function | [ ¥

of position. O a x x4+ Ax b

A FIGURE 18.6 A test charge ¢" moves radially along a straight line extending from charge 4.
As it does so, the electric force on it decreases in magnitude.
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Potential energy of point charges
The potential energy U of a system consisting of a point charge g’ located in

the field produced by a stationary point charge g, at a distance r from the
charge, is

r

U= kqf | (18.8)




fEUE 0 E)  Change in potential energy
Analysis 18.1 , o , ,
Consider two positive point charges g, and ¢,. Their

potential energy 1s defined as zero when they are infinitely far
apart, and 1t increases as they move closer. If g, starts at an imtial
distance r; from g, and moves toward g, to a final distance
r, — Ar (where Ar 1s positive), by how much does the system’s
potential energy change?

SOLUTION The electric potential energy of the two charges

depends on the distance r between them: U = k(g,q, ) [r. Initially,

the distance between them 1s r,. After ¢ moves a distance Ar

toward g,., the distance 1s r, — Ar. The change in potential energy

depends on the reciprocal of these distances, so C must be the

answer. More formally, the change in potential energy 15
AU=U, — U, = kg B kﬁ]’li?z‘

r,— Ar T,




Electric Potential Energy

Potential energy can be defined as the capacity for doing work which arises
from position or configuration. In the electrical case. a charge will exert a
force on any other charge and potential energy arises from any collection of
charges. For example, if a positive charge Q 1s fixed at some point in space.
any other positive charge which is brought close to it will experience a
repulsive force and will therefore have potential energy. The potential energy
of a test charge q in the vicinity of this source charge will be:

where k 1s Coulomb's constant.

U= —Qq In electricity, it is usually more convenient to
2 use the electric potential energy per unit

r q charge. just called electric potential or
voltage.

Q Application:Coulomb barrier for nuclear
fusion

Show

Energy in electron volts




Z.ero Potential

The nature of potential is that the zero point 1s arbitrary: it can be set like the
origin of a coordinate system. That is not to say that it 1s insignificant: once
the zero of potential 1s set. then every value of potential 1s measured with
respect to that zero. Another way of saying 1t is that it is the change in
potential which has physical significance. The zero of electric potential
(voltage) 1s set for convenience. but there 1s usually some physical or
geometric logic to the choice of the zero point. For a single point charge or
localized collection of charges. it 1s logical to set the zero point at infinity.
But for an infinite line charge. that 1s not a logical choice, since the local
values of potential would go to infinity. For practical electrical circuits, the
earth or ground potential is usually taken to be zero and everything 1s
referenced to the earth.

Zero of potential at infinity
Zero of mechanical potential energy
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A FIGURE 18.7 Potential energy associated
with a charge " at point @ depends on
charges g, g>. and g; and on their respective
distances ry, ry, and r; from point a.

Making U = 0 at infinity is a convenient reference level for
electrostatic problems, but in circuit analysis other
reference levels are often more convenient.

— + =+ = + -
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18.2 Potential

A Application Really high voltage.

A lightning bolt occurs when the electric
potential difference between cloud and

ground becomes so great that the air
between them ionizes and allows a current
to How. A typical bolt discharges about

107 J of energy across a potential difference

of about 107 V. In a major electrical storm,
the total potential energy accumulated and

discharged is enormous.



Definition of potential
The electric potential V' at any point in an electric field is the electric potential
energy U per unit charge associated with a test charge g' at that point:

V=— or U=gq'V. (18.10)

Potential energy and charge are both scalars, so potential 1s a scalar quantity.
Unit: From Equation 18.10, the units of potential are energy divided by
charge. The SI unit of potential, 1] ,I'C, 15 called one volt (1 V), in honor of

the Italian scientist Alessandro Volta (1745-1827):

1 V= 1volt = 1]/C = 1 joulefcoulomb.



In the context of electric circuits, potential is often
called voltage.

For instance, a 9 V battery has a difference in
electric potential (potential difference) of 9 V
between its two terminals. A 20,000 V power line
has a potential difference of 20,000 V between
itself and the ground.



To put Equation 158.2 on a “work per unit charge™ basis, we divide both sides
by g'. obtaining
wﬂ4b Uﬂ Ub
= —— =V, =V, (18.11)

r r

q q q

where V, = U,/q' is the potential energy per unit charge at point @ and V/, is that at
b. We call V_ and V, the pofential at point a and potential at point b, respectively.
The potential difference V, — V), is called the potential of a with respect to b.




exampLe 182 Parallel plates and conservation of energy

A 9.0V battery is connected across two large parallel plates that are separated by 4.5 mm of air, creating a
potential difference of 9.0 V between the plates. (a) What 1s the electric field in the region between the
plates? (h) An electron is released from rest at the negative plate. If the only force on the electron is the elec-
tric force exerted by the electric field of the plates, what 1s the speed of the electron as it reaches the positive

plate? The mass of an electronism, = 9.11 x 107" kg|

n T
[ f"+.r',r"+f’ f’+,a;‘+f eyl *.,f
b b
. E ) }
9.0V | d =4.5 mm
ViFFEY.g |
‘ W _Gm,u"J
a :_'L o —E
L _—\:Lf*’f\—f % _;’@ — 7 =7 _‘_k{h
T n{e;q"” <o~ lR“'|
Vi — V; 0.0V U
E= = = 2.0 % 10° V/m.

d 4.5 x 1077 m



Part (b): Conservation of energy applied to points a and b at
the corresponding plates gives

K,-_-:_I_ Uﬂ=Kb+Ub'
Also, U = g'V, where ¢' = —e, the charge of an electron. Using
this expression to replace LU in the conservation-of-energy equa-
tion gives
Ks + @'V, = Ky + 'V
The electron is released from rest from point a. so K, = 0. We
next solve for K.
KII_-, — Efrl:li"'ru — 'I'.-"b} — _F{F_._-! — ll"l:r_-..j — +l'.""|::'h"'rb — li"'rﬂj
= (160 x 107 C)(9.0V)
=144 x 107"*1.

Then K, = $m,u; gives

2K, 2(1.44 x 107%]) .
vp = = ——— = 1.8 X 10°m[s.
m, 9.11 % 107 kg




Potential of a point charge
When a test charge g’ is a distance r from a point charge g, the potential V is
U q

V=—=k- (18.12)
q F

where £ is the same constant as in Coulomb’s law (Equation 17.1).

Similarly, to find the potential V' at a point due to any collection of point
charges q,. ¢-. ¢s. . . . at distances r,, r. ra. . . .. respectively, from g'. we divide
Equation 18.9 by g":

U :
Ty . LN . I | (18.13)

o U TR b




Potential Reference at Infinity

The general expression for the glectric potential as a result of a point charge
Q can be obtained by referencing to a zero of potential at infinity. The

expression for the potential difference is:

Taking the limit as r,—o gives simply

kQ 0O

r 4me,r

V =

tor any arbitrary value of . The choice
of potential equal to zero at infinity is
an arbitrary one, but 1s logical in this
case because the electric field and force
approach zero there. The electric

potential energy for a charge q atris

then

_*q

r

U




EXAMPLE 18.3 Potential of two point charges

Two electrons are held in place 10.0 cm apart. Point a is midway
between the two electrons, and point b is 12.0 cm directly above
point a.

Calculate the electric potential at point a and at point b.

SET UP Fipure 18.9 shows our sketch. Point b is a distance

rp = V(12.0cm?) + (5.0 cm)? = 13.0 cm from each electron. ba
SOWE Part (a): The electric potential V at each point is the sum F w*
of the electric potentials of each electron: V= V|, + V; = .f:q—l + f;l ',
ﬁ.% withg, = g, = —e. At pointa, rj = 1, = r, = 0.050 ﬂ;ﬁ 50 507 "_.

1, _ 2ke _ 2(899X 10°N-m*[C?)(1.60 x 107" C) S

= 0.050 m / | \
= 58 % 1078V, / 4

Atpointh, = r, = r, = 0.130 m, so Jx"' — | L I"\

v, = 2 _ ~2(8.99 x 10°N-m?/C?)(1.60 X 107 C) 0

Iy 0.130 m

= —22 % 107V,



Parallel plates

Y A A,
L (= .-T-.
E |
| rﬁfl" q -
| ' !

| |
| I
e

A i

We choose the potential

V to be zero at y = 0 (point
b in our sketch).

Remember that potential
is simply potential energy
per unit charge.

SOLVE The potential energy U for a test charge g" at a distance y
above the bottom plate is given by Equation 18.5, U = g'Ev. The
potential V' at point v is the potential energy per unit charge,
V= Ulg', so

V= Ey.

Even if we had chosen a different reference level (at which
V=10), it would still be true that V; — Vi, = Ev. At point a,
where y = dand V, = V, V; — V, = Ed and

. 'h"'r_g - 1":1-. . L"ru&

- d 4

E



18.3 Equipotential Surfaces

An equipotential surface is defined as a surface on which
the potential is the same at every point.

No point can be at two different potentials, so
equipotential surfaces for different potentials can never
touch or intersect.

The potential energy for a test charge is the same at every
point on a given equipotential surface, so the field does no
work on a test charge when it moves from point to point
on such a surface.



—— Electric field lines

—— Cross sections of equipotential
surfaces at 20V intervals ov

ia) A single positive charge ib) An electric dipole

b
S R |
S - AN
P i “hgl T, T |
- "' _ - ﬁ" ‘f _"' ST

ie) Two equal positive charges

A FIGURE 18.11 Equipotential surfaces and electric field lines for assemblies of point charges. How would the diagrams change if the charges

were reversed?



A FIGURE 18.13 When charges are at rest, a
conducting surface is always an equipotential
surface. Field lines are perpendicular to a
conducting surface.



E must be perpendicular to the surface at every point.
Field lines and equipotential surfaces are always
mutually perpendicular.

We can prove that when all charges are at rest, the
electric field just outside a conductor must be
perpendicular to the surface at every point.

It follows that, in an electrostatic situation, a conducting
surface is always an equipotential surface.



Electric field represented as potential gradient
The magnitude of the electric field at any point on an equipotential surface
equals the rate of change of potential, AV, with distance As as the point
moves perpendicularly from the surface to an adjacent one a distance As
away:
AV

E = Ay (18.14)
The negative sign shows that when a point moves in the direction of the elec-
tric field, the potential decreases. The quantity AV/As, representing a rate of
change of V with distance, 1s called the potential gradient. We see that this is
an alternative name for electric field.
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surfaces within a
capacitor
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18.4 The Millikan Oil-Drop Experiment

Vo -

I Atomizer {1_ Measure voltage at which droplet

|
" hovers. The observer adjusts the
vl | e voltage across the plates until the

0
J

Atomizer creates small droplet hovers motionless —
charged oil droplets + Droplet meaning lhf}t the electric .ﬁmr:_'a: on
— the droplet just counters its weight.
el )
Platea |[*_+ _+ |+ + =+ __
: 8 .
4 B Fp=qE

Telescope _

o B V
A Gl | - -

-

e T w= mg
Ll N o
Plate b |I=__ = = = = = =
To find the droplet’s charge g, we
still need the droplet’s mass.
(a) Schematic diagram of apparatus (b}

ngl Find droplet’s terminal speed. The
voltage is switched off, letting the
droplet fall. From its terminal speed
v, and the air drag force Fp, its radius
can be calculated. Its radius and
known density yield its mass.

o
"
w = mg
The droplet’s charge g can now be

found.
el

A FIGURE 18.16 The Millikan oil-drop experiment, which demonstrated that charge is quantized and provided the first determination of e.



1.1, Measure voltage at which droplet

hovers. The observer adjusts the
voltage across the plates until the
droplet hovers motionless —
meaning that the electric force on
the droplet just counters its weight.

E:FL'I?
i

W = mg

To find the droplet’s charge g, we
still need the droplet’s mass.

Droplet stationary
qE = mg
So
_mg
1=
we can find E from

E_V
- d

and find m from
4tr

m:pV:pT

and r from terminal velocity



Now we can measure the charge on a droplet.
Each droplet will have a different charge (+ or -).

So with MANY measurements and knowing that
q=1ne
We can determine e.

(Where n is an integer and e is the charge on an
electron)



An electron has a charge of

1.602 x 1071° C

Electrovolt

An electrovolt is a unit of energy

If we move an electron through a potential difference of
1V

AU =qV =1.602x 10719 x 1

1eV =1.602x 10717



18.5 Capacitors

A FIGURE 18.17 An assortment of practical
capacitors.
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Definition of capacitance
The capacitance C of a capacitor is the ratio of the magnitude of the charge Q

on either conductor to the magnitude of the potential difference V,;, between
the conductors:

_9
=9 (18.15)

Unit: The SI unit of capacitance is called 1 farad (1 F), in honor of Michael
Faraday. From Equation 18.15, 1 farad is equal to 1 coulomb per volt (1 C[V):

1F =1CJV.

In circuit diagrams, a capacitor is represented by either of these symbols:

—H e



Wire Plate a, area A

A - /Tf
‘ /

-
e/
Potential /:k ‘/ﬂ'

gL
!(L £

O
A

(@

_L d
=

L

=2

(
N

difference = V4

Wire Plate b, area A

,C

Ci

ia) A basic parallel-plate capacitor
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(b) Electric field due to a parallel-plate capacitor

)\(H
L

A FIGURE 18.19 The elements of a parallel-
plate capacitor.



We can define the surface charge density as

Q

O'=Z

Where Q is the charge on the plates and A is the area of the plates

E':—:i
€y €pA

k = 1/47e,, where ey = 8.854 x 1072 C*}IN - m%.

Capacitance of a parallel-plate capacitor

The capacitance C of a parallel-plate capacitor in vacuum 1s directly propor-
tional to the area A of each plate and inversely proportional to their separa-
tion -

0 A
C=—=¢—. 18.16
v, Eud ( )



This gives a value of free space permittivity

€, =8854187817x 10" F/m=885x10"F /m
which in practice is often used in the form

1
dre,

K= =8.987552 x 10° Nm* / C* = Coulomb’s constant



Capacitors

Capacitance is typified
by a parallel plate
arrangement and 1s
defined in terms of
charge storage:

+
+++ +++++ = V
Unit= SOUIOMD _ o rad
- volt
Capacitor
where

A battery will transport charge from one plate
to the other until the voltage produced by the )
charge buildup is equal to the battery voltage. e Q =magnitude of

charge stored on
each plate.

o V =yvoltage
applied to the
plates.




EXAMPLE 18.7 Properties of a parallel-plate capacitor

The plates of a parallel-plate capacitor are 5.00 mm apart and 2.00 m?® in area. A potential difference of
10.0 kV 1s applied across the capacitor. Compute (a) the capacitance, (b) the charge on each plate, and
(c) the magnitude of the electric field in the region between the plates.

co&A (8.85 % 1072 F/m)(2.00 m?)
a d 5.00 % 107 m

= 3.54 x 10~°F = 0.00354 yF.
K A-2.000 /7
Vo= 10,0k 7T d = 5.00mm

als

Q=CV,=(354x107F)(1.00 x 10° V)
=354 x 107°C = 354 4C.

V.,  1.00 % 10*V
_E: = =E.Cﬂ}{1ﬂﬁ\f 3
c d  500%10°m fm




18.6 Capacitors in Series and in Parallel

Capacitors in series:
* The capacitors have the same charge (2.
* Their potential differences add:

: . I
Vac T Vep = Vi . Equivalent capacitance
E is less than the indi-
A . Chargeis vidual capacitances:
+Q—u—2{7’| Vo= v 1h-.'..-'a|'n-_' P P
—=== e ' as for the ——gm—Cag ™ —*
- |
individual —Q
f =V [ T 4 R : | | |
ab 3 capacitors. = =2 4+ >
C, C, 5
++ 1+ + F. =V k
roxslen v, = v, .
_Q p—— p— b
. s (b) The equivalent single capacitor
b

(a) Two capacitors in series



Equivalent capacitance of capacitors in series

When capacitors are connected in series, the reciprocal of the equivalent
capacitance of a series combination equals the sum of the reciprocals of
the individual capacitances:

1 1 1 1
Cy € N C, N C; + - (capacitors in series)  (18.17)

The magnitude of charge is the same on all of the plates of all of the capaci-

tors, but the potential differences across individual capacitors are, in general,
different.



Capacitors in parallel:

* The capacitors have the same potential V.

* The charge on each capacitor depends on its
capacitance: @, = C,V, @, = G, V.

Charge is the sum of the
individual charges:

il
T ®
++ 1+ + +
Vie = V O=@ G
Vo
b
(a) Capacitors connected in parallel - E
3
Vv
_»
b

—0=0,+ ¢
Equivalent capacitance:
C,_-.L] — f._l| T 'r::.

{(b) The equivalent single capacitor



Equivalent capacitance of capacitors in parallel
When capacitors are connected in parallel, the equivalent capacitance of the
combination equals the sum of the individual capacitances:

Cou =G+ G+ G+ (capacitors in parallel)  (18.18)



Capacitor Combinations

Capacitors in parallel add ...

Ci

C;

IfCy =

then ng =Cy+ Cot ..

ur Co=

Capacitors in series combine as reciprocals ...

C

Co

I U I

mama CE“ C1
Coq -

Cz
HF

HuF



EXAMPLE 18.8 Capacitors in series and in parallel

Two capacitors, one with C; = 6.0 yF and the other with C, = 3.0 yF, are connected to a potential differ-
ence of V;, = 18 V. Find the equivalent capacitance, and find the charge and potential difference for each
capacitor when the two capacitors are connected (a) in series and (bh) in parallel.

SOLUTION

SET UP Figure 18.24 shows our sketches of the two situations.
We remember that when capacitors are connected in series, the
charges are the same on the two capacitors and the potential dif-
ferences add. When they are connected in parallel, the potential
differences are the same and the charges add.

SOLVE Part (a):

Thus,

- C,C,  (60uF)(3.0 uF)

M C,+C, 60uF+30puF

= 2.0 uF.

The charge is 0 = C,,V = (2.0 uF) (18 V) = 36 uC, the same
for both capacitors. The voltages are

The equivalent capacitance for the capacitors Q 36uC Q@ 36uC
in series is given by Equation 18.17: V)= E ~ 6.0 uF =60V and V= C, 30 uF =120V.
1 1 | C, + G,
—=—+—= - Note that V, + V, = V_, (1e.,60V + 12V = 18 V).
. oG c.C, ote that V, , (e )
(R
&
J'I:j ++ CII=£|:'_]},|,F-
~QE=T=
Vo = BV
HG@ ,:‘;:;E":I{J'J F
Q===

s



Part (b): When capacitors are connected in parallel, the poten-
tial differences are the same and the charges add. The equivalent
capacitance 1s given by Equation 18.18:

Cy = C, + C, = 6.0 uF + 3.0 uF = 9.0 uF.

The potential difference for the equivalent capacitor 1s equal to
the potential difference for each capacitor: a

.II'Jr|_=II""1=l|""ﬂ!,=]Ev.

The charges of the capacitors are V=18V

i

Q,=CV=(60puF)(18V) = 108 uC,
0, = GV = (30uF)(18V) = 54 uC. L.

b

The total charge 15 0, + (), = Q, so the charge on the equivalent
capacitoris Q = C,V = (9.0 uF) (18 V) = 162 uC.

™



18.7 Electric Field Energy

Many of the most important applications of capacitors
depend on their ability to store energy.

The capacitor plates, with opposite charges, separated
and attracted toward each other, are analogous to a
stretched spring or an object lifted in the earth’s
gravitational field.

The potential energy corresponds to the energy input
required to charge the capacitor and to the work done
by the electrical forces when it discharges. This work is
analogous to the work done by a spring or the earth’s
gravity when the system returns from its displaced
position to the reference position.



Energy in a capacitor

V_AW
= Aq
AW=VAq=%Aq

vV vV .,
U=Wiotar = D) Q= > CV=§CV

Where V/2 is the average potential
difference during the charging process.



Energy density in an Electric field

€EpA

Since C=7 and V = Ed

1
Energy QCVZ 1
u = energy density = o == EEOEZ




EXAMPLE 18.9 Stored energy

A capacitor with C; = 8.0 uF is connected to a potential difference V;; = 120V, as
shown in Figure 18.25a. (a) Find the magnitude of charge (J; and the total energy
stored after the capacitor has become fully charged. (b) Without any charge being
lost from the plates, the capacitor 1s disconnected from the source of potential differ-
ence and connected to a second capacitor C; = 4.0 yF that 1s imitially uncharged
(Figure 18.25b). After the charge has finished redistributing between the two capaci-
tors, find the charge and potential difference for each capacitor, and find the total
stored energy.

T [
+ 4 +++QI +Q2++ + +=
C) —— — w — i,
V=120V T —1 C, = 8.0 uF I:___—Q —Qj::f:* 4.0 uF
— Iy === i :
Wl “]J
— i

(a)



Vy = 120V +gﬂ L o = 80 uF
i =

(@)

SOLVE Part (a): For the ongmnal capacitor, we use the poten-
tial difference and the capacitance to find the charge:

Oy = C\V, = (8.0 uF)(120V) = 960 uC. To find the stored
energy, we use Equation 18.109:

U =%Qﬂvﬂ =%(ﬂﬁﬂ X 107°C) (120 V) = 0.058 .



+ +
Cl —— ——C; = 40yF

(b}

Part (b): From conservation of charge, (J, + (), = ;. Since
V 1s the same for both capacitors, (, = C,V and @, = V.

When we substitute these equations into the conservation-of-
charge equation, we find that C,V + G,V = @, and

V= Do _E'-‘ﬁl].;.-,{:
C+ G 12yF

Then Q, = C,V = 640 uC and @, = C,V = 320 uC.

The final total stored energy 1s the sum of the energies stored
by each capacitor:

1 1 1 1
EQIF + EQEF = E[:Q] +0,)V= EQ&V

%(qm % 1076C) (80 V) = 0,038 J.



18.8 Dielectrics

Placing a solid dielectric between the plates of a capacitor
serves three functions.

First, it solves the mechanical problem of maintaining two
large metal sheets at a very small separation without actual
contact.

Second, many insulating materials can tolerate stronger
electric fields without breakdown than can air.

Third, the capacitance of a capacitor of given dimensions is
greater when there is a dielectric material between the
plates than when there is air or vacuum.



Yacuum

Electrometer

plates)

{measures potential
difference across

()

== Adding the dielectric
reduces the potential
across the capacitor.

Conductor
(metal foil)

N
Conductor =
(metal foil) Dielectric
(plastic sheet)

A FIGURE 18.26 A common type of parallel-
plate capacitor is made from a rolled-up sand-
wich of metal foil and plastic film.




Dielectric constant of the material, K

TABLE 18.1 Values of dielectric constant K at 20°C

Material K Material K
Vacuum I Polyvinyl chloride 3.18
Air (1 atm) 100059 Plexiglas® 3.40
Adir (100 atm) 1.0548 Glass 5-10
Teflon® 2.1 Neoprene 6.70
Polyethylene 2,25 Germanium |6
Benzene 228 Glycerin 42.5
Mica 36 Water 0.4
Mylar® 3.1 Strontium titanate 310

Where C, is the capacitance in a vacuum



For a given charge density (F;, the induced
charges on the dielectric’s surfaces reduce the
electric field between the plates.

Vacuum Delectric
‘ -
i) —a i) . O
—0; (LF
+ - : - -
+ — i E—g- +|—
+ E :
+ - +- +|-
+ - + -
+ - += +|-
+ - :
nduced.,
- M 1 charges e
+ :
+ +- +|-
+ :
+ +- +|-
+ - :
+ - += +|-
—0; 0
i =T o =T
(a) ih)

A FIGURE 18.28 The effect of a dielectric
on the electric field between the plates of a
capacitor.



SOLVE Part (a): The presence of the dielectric increases the
capacitance. Without the dielectric, the capacitance 1s

/S A——
o _ A _ (885X 107" Flm) (0200 m?) I [
d 0.010 m v,=3~|.oo o ‘EEEIIGHLGG B
=1.77 x 107" F =177 pF. ” ‘ _QE__—_J
The original charge on the capacitor 1s AL
&
0 = GV, = (1.77 x 107'°F) (3.00 x 10° V) BEFORE
=531 x 1077 C = 0.531 uC.
After the dielectric 1s inserted, the charge is still @ = 0.531 uC,
but now V = 1.00 kV, so
6
c=L2 _0BIXI0TC _ o3+ 10-19F = 531 pF.
Vv 1.00 = 10° V
__'+QT+.+—+| ‘
Part (b): By definition, the dielectric constant is V=100 kY 1@@%‘&*“
-Q
K = C[C, = (531 pF)/(177 pF) = 3.00.
Note that this is also AFTER

K=V,/V=(3.00kV)/(1.00kV) = 3.00.



Dielectric Breakdown

The maximum electric field a material can withstand

without the occurrence of breakdown is called
its dielectric strength.

A FIGURE 18.30 Dielectric breakdown in the laboratory and in nature. The left-hand photo

shows a block of Plexiglas® subjected to a very strong electric field: the pattern was etched by
flowing charge.



18.9 Molecular Model of Induced Charge

In the absence of

' an electric field,
polar molecules

orient randomly.

3
ol
e

(a)

‘ ~ When an
electric field is

—'—\—- applied, the
molecules tend

_. = to align with it.

i

-
-

(h)

A FIGURE 18.31 The effect of an electric
field on a group of polar molecules.

O/ O In the absence of
an electric field,
‘ ’ nonpolar molecules
Vi are not electric
; ' O dipoles.

(a)

An electric field
causes the mole-
cules’ positive and
negative charges
to separate
slightly, making
the molecule
effectively polar.

(b)

A FIGURE 18.32 The effect of an electric
field on a group of nonpolar molecules.
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A FIGURE 18.33 How a dielectric reduces the electric field between capacitor plates.
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(d) Resultant field



SUMMARY

Electric Potential Energy

(Section 18.1) The work W done by the electric-field force on a
charged particle moving in a field can be represented in terms of
potential energy U: W_,, = U, — U, (Equation 18.2). For a
charge g’ that undergoes a displacement 5 parallel to a uniform
electric field, the change in potential energy 15 U, — U, = g¢'Es
(Equation 18.5). The potential energy for a point charge ¢’ moving
in the field produced by a point charge g at a distance r from g’ is

U= k%L (18.8)

Point
charge

Test charge
9 a E q'
I s
d |
Fh

Potential

(Section 18.2) Potential, a scalar quantity denoted by V. is potential
energy per unit charge. The potential at any point due to a point
charge is

V=—=k-. (18.12)

A positive test charge tends to “fall” from a high-potential region
to a low-potential region.



Equipotential Surfaces

(Section 18.3) An equipotential surface 15 a surface on which the
potential has the same value at every point. At a point where a field
line crosses an equipotential surface, the two are perpendicular.
When all charges are at rest, the surface of a conductor 1s always
an equipotential surface, and all points in the interior of a conduc-
tor are at the same potential.

R
il >0 " Electric field line

5 AT
/= Cross section of

PN equipotential surface
\ o

The Millikan Oil-Drop Experiment | Atomizer
(Section 18.4) The Millikan oil-drop experiment determined the P
*Droplet

electric charge of individual electrons by measuring the motion of

electrically charged o1l drops in an electric field. The size of a drop i e 3
1s determined by measuring its terminal speed of fall under gravity - E

. =l E_J . o
and the drag force of ar. & Telescape [} Vb i




Capacitors
(Sections 18.5 and 18.6) A capacitor consists of any pair of con-
ductors separated by vacuum or an insulating material. The capaci-
tance C is defined as C= Q[V, (Equation 18.14). A
parallel-plate capacitor is made with two parallel plates, each
with area A, separated by a distance d. If they are separated by vac-
uum, the capacitance is C = €,(A[d) (Equation 18.16).

When capacitors with capacitances C,, C,, C;, ... are con-
nected in series, the equivalent capacitance C, 1s given by

1 1 1 |

ettt (18.17)

C

aq

When they are connected in parallel, the equivalent capacitance 1s

Coq=C,+Cy+ C5+ -+ (18.18)

Wim PIaLE: a, area A

,ff

,-"+ 0 /
F’nl.cmla] / _;_d

difference = V
; Plate b, area A
Wire

Electric Field Energy

(Section 18.7) The energy U/ required to charge a capacitor C to a
potential difference V and a charge () is equal to the energy stored
in the capacitor and 1s given by

_ \,_Q 1 .,
U_mm_EP_EE_?W. (18.19)

This energy can be thought of as residing in the electric field
between the conductors; the energy density u (energy per unit vol-

ume) 1s 4 = EE&EZ (Equation 18.20).

+00 + o+ + + + +
|

el




Dielectrics

(Section 18.8) When the space between the conductors is filled with
a dielectric matenal, the capacitance increases by a factor K called
the dielectric constant of the material. When the charges =0 on
the plates remain constant, charges induced on the surface of the
dielectric decrease the electric field and potential difference
between conductors by the same factor K. Under sufficiently
strong fields, dielectrics become conductors, a phenomenon called
dielectric breakdown. The maximum field that a material can with-
stand without breakdown is called its dielectric strength.

O + + + + ¥+ + + + ¥+ + + + |(F

= _'ﬂ-- _\
E ! ;}Induccd
h
l o, charges
1+ + § + 1 + 1 + ¥ + 1
== === === === = = | —r

Molecular Model of Induced Charge

(Section 18.9) A polar molecule has equal amounts of positive and
negative charge, but a lopsided distribution, with excess positive
charge concentrated on one side of the molecule and negative
charge on the other. When placed in an electric field, polar mole-
cules tend to partially align with the field. For a material contain-
ing polar molecules, this microscopic alignment appears as an
induced surface charge density. Even a molecule that 1s not ordi-
narily polar attains a lopsided charge distribution when it is placed
in an electric field: The field pushes the positive charges in the
molecule in the direction of the field and pushes the negative
charges in the opposite direction.




