Week Topic Content Text reference [CLO][PLO]
. . Electric charge (Section 17.1) College Physics: Chapter 17
1 Electric Charge Conductor and insulators (Section 17.2)
Conservation and quantization of charge (Section 17.3)
2 Electric Charge . Coulomb’s Law (Section 17.4) College Physics: Chapter 17
. Electric Fields and Electric Forces (Section 17.5)
- . Calculating Electric Fields (Section 17.6) College Physics: Chapter 17
3&4 Electric Field . Electric Field Lines (Section 17.7)
. Gauss’s Law and Field Calculations (Section 17.8)
. Electric Potential Energy  (Section 18.1)
5&6 Electric Potential . Potential (Section 18.2) College Physics: Chapter 18
. Equipotential Surfaces (Section 18.3)
. . Vacuum & Dielectric Capacitors (Sections 18.5 and 18.8) .
7 Capacitance . Capacitors in series and in parallel (Section 18.6) College Physics: Chapter 18
MIDTERM
. Current, Resistance & Ohm’s Law (sections 19.1 & 2)
8 Current, Resistance, and | Electromotive force and Circuits (section 19.3) Coll Phsics: Chapter 19
Dielectric Current Energy and Power in Electric Circuits (section 19.4) oflege Fhysics: Lhapter
9 Circuits . Resistors in Series and in Parallel (section 19.5)
° Kirchhoff’s Rules (section 19.6)
. Magnetism (Section 20.1)
. Magnetic Field and Magnetic Force (Section 20.2)
10&11 . Motion of Charged Particles in a Magnetic Field (Section 20.3)
M i< Field and . Magnetic force on a current-Carrying Conductor (section 20.5) I hvsics: Ch
Magne:!c Fle an ° Force & Torque on a Current Loop; Direct-Current Motors (section 20.6) College Physics: Chapter 20
agnetic Forces
8 . Magnetic Field of a Long, Straight Conductor & forces between Parallel Conductors
12 (sections 20.7-8)
Solenoid Magnetic Field  (section 20.9)
Biot-Savart and Ampere’s laws (section 20.10)
. Electromagnetic Induction & Faraday’s Law (sections 21.1-3) .
Elect t :
13814 Inzz;;;nnagne ic Lenz’s Law (section 21.4) College Physics: Chapter 21
. Motional Electromotive Force (section 21.5)
15 Electromagnetic Mutual Inductance and Self-Inductance (section 21.7-8) College Physics: Chapter 21

Induction

Transformers (section 21.9)
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Materials/substances may be classified according to their
capacity to carry or conduct electric charge:

Conductors are material in which electric charges move freely.
— Metals are good conductors: Copper, aluminum, and silver.

Insulator are materials in which electrical charge do not move
freely.

— Most nonmetals are insulator: Glass, Rubber are good insulators.

Semiconductors are a third class of materials with electrical
properties somewhere between those of insulators and
conductors.

— Silicon and germanium are semiconductors used widely in the
fabrication of electronic devices.



Objects that exert electric forces are said to have charge. Charge
is the source of electrical force. There are two kinds of electrical

charges, positive and negative. Same charges (+ and +, or - and -)
repel and opposite charges (+ and -) attract each other.




Plain plastic rods neither
altract nor repel each

i |:_.| other...

... bt after being
rubbed with fur.
the rods repel
each other.

« S

(T30
L F g—
- ™

{a} Interaction between plastic rods mbbed
on fur

Plain glass rods neither
attract nor repel each
oither...

Silk

st ... but after being
mubbed with =silk,
the rods repel
each other.

() Interaction between glass rods rubbed
on silk

4 FIGURE 171 Expenments illustrating the nature of electne charge.

Like and unlike charges

The fur-rubbed plastic
rod and the silk-
rubbed glass rod

aitract each
other...

U=-——= - W+ . H+ +]

»> <4

v.. andd the fur and silk
gach attracts the rod it

f —% rubbed.
]+ g H)

() Interaction between ohjects with opposite
charges

Two positive charges or two negative charges repel each other; a
positive and a negative charge attract each other.
In the preceding discussion, the plastic rod and the silk have negative charge; the
glass rod and the fur have positive charge.



The person in this snapshot was
amused to find her hair standing
on end.

Luckily, she and her companion left
before the area was hit by
lightning.

Just before lightning strikes, strong
charges build up in the ground and
in the clouds overhead. If you're
standing on charged ground, the
charge will spread onto your bodly.

Because like charges repel, all your
hairs tend to get as far from each
other as they can.



Most of the
atom’s volume
is occupied
sparsely by
electrons.

g: Tiny compared with the
Nucleus | - “_ & rest of the atom, the
. ‘* B nucleus contains over
W 99.9% of the alom’s mass.

~1075m

o Proton: Positive charge
Mass = 1.673 x 107 kg

-
O Neutron: No charge
Mass = 1.675 ¥ 107 kg

@ Electron: Negative charge
Mass = 9.109 x 10~ kg

The charges of the electron and
proton are equal in magnitude.

A FIGURE 17.2 Schematic depiction of the
structure and components of an atom.



i@ Protons {+) ) Neutrons
@ Electrons (—}

0o

(a) Neutral lithium atom (Li}: (b} Positive lithium jon (Li*)k  (c) Negative lithium ion (Li ")

3 protons (3+) 3 profons (3+) 3 protons (3+)

4 neutrons 4 neutrons 4 neutrons

3 electrons (3—) 2 electrons (2—) 4 electrons (4—

Electrons equal protons: Fewer electrons than profons: More electrons than protons:
Zero net charpe Positive net charge Megative net charge

A FIGURE 17.3 The neutral lithium (Li) atom and positive and negative lithium 1ons.



Mass of electron = m, = 9.1093826(16) = 107" kg
Mass of proton = m, = 1.67262171(29) = 10 Tk

g
kg

Mass of neutron = m, = 1.67492728(29) = 107?

An ion is an atom that has lost or gained one or more
electrons.

Ordinarily, when an ion is formed, the structure of the
nucleus is unchanged. In a solid object such as a carpet or
a copper wire, the nuclei of the atoms are not free to

move about, so a net charge is due to an excess or deficit
of electrons.



Electron Electron buildup

Metal deficiency
ball Negatively 4 - Wire
charged _
Insulating rod =
stand
+
Ground
Ej Uncharged metal ball @ Negative charge on r-u::n_d @ Wire lets electron build-
repels electrons, creating up (induced negative
zones of negative and charge) flow into
positive induced charge. ground.

0O o
@\@é Z j?_ jg;nund

’(\é
,\\\8\ @ Wire removed; ball now @ Rod removed; positive

has only an electron- charge spreads over
deficient region of ball.
positive charge.

I —
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Ball with
positive charge Metal ball

with induced
charges

Ball A's (+) charge pulls on the
(—) induced charge and pushes on
the (+) induced charge. Because the
(—) charge is closer to A, the

0 pull 1s stronger than the push,
—_—

s0 B 1s attracted to A.
A FIGURE 17.7 The charge on ball A induces
charges in ball B, resulting in a net attractive
force between the balls.



Negatively
charged
comb

The
comb’s (—)
charge repels
the electrons in
each molecule in
the paper, creating
induced charges. The
side of the paper facing
9, & the comb thus has a slight

net positive charge.

Molecules with
induced charges

Paper scrap
(insulator)

A charged plastic comb
picks up uncharged bits
of paper.

Positively
charged
comb

@I A comb with a (+)

charge also creates
induced charges that attract
the paper to the comb.



Conservation of charge

The algebraic sum of all the electric charges in any closed system is constant.
Charge can be transferred from one object to another, and that 1s the only way
in which an object can acquire a net charge.



Electric Current

Electric current is the rate of charge flow past a given point in an electric
circuit. measured in Coulombs/second which i1s named Amperes. In most DC
electric circuits. it can be assumed that the resistance to current flow is a
constant so that the current in the circuit 1s related to voltage and resistance
by Ohm's law. The standard abbreviations for the units are 1 A = 1C/s.

_.._lm: l\

V B
=R
Current in
Ohm's Law Current as Enrra nn a
source of .
magneti ek Electric Charge

@ proton charge e

@ electron charge -e

The unit of electric charge is the Coulomb (abbreviated C). Ordinary
matter 1s made up of atoms which have positively charged nuclei and
negatively charged electrons surrounding them. Charge 1s quantized as
a multiple of the electron or proton charge:

1.602 x 10.19 coulombs

-19
-1.602 x 10 coulombs



Coulomb's Law

Like charges repel, unlike charges attract.

The electric force acting on a point charge q; as a result of the presence of a

second point charge g, 1s given by Coulomb's Law:

F_q, dq, F
-— ¢ e — )
Like charges repel F= 1((]] 4 - 449>  Coulomb’s
Unlike charges attract o ) -

2 2 Law
4o --Fe ] 47e, 1

where £y = permittivity of space

'
Coulomb's Constant
Felectric T¢ ﬁ;ravity ]
_ 01O N . 22 b b

- Removal of one valence electron k= P 9x10° N - m*/C” = Coulomb's constant
1cm out of 5.7 x 10'? would provide v
i el enl: ught net charge t(:hhﬂ the t ) The constant of proportionality k appearing in Coulomb's law is often
spheres Sphere, oyercommg e gravity called Coulomb's constant. Note that it can be expressed in terms of

of the entire Earth. another constant. £ = permittivity of space.




<

T The negatively

charged ball attracts
the positively charged
one; the positive ball
moves until the elastic
forces in the torsion
fiber balance the

Torsion fiber

/7 .

a”/ W
@,
Charged - — §

pith balls

(a) A torsion balance of the type used by
Coulomb to measure the electric force

electrostatic attraction.

FZ on U\
\H » Like charges repel
@~ \\,
s . G\‘al on 2
Ilfmiz{_ lc.nnlj 42
9194

(b} Interaction of like and unlike charges

Schematic depiction of the apparatus Coulomb used to determine the
forces between charged objects that can be treated as point charges.



The forces that two charges exert on
each other always act along the line
joining the charges. The two forces are
always equal in magnitude and opposite
in direction, even when the charges are

not equal. The forces obey Newton’s
third law.



Generators, like the
huge Van de Graaff
generators shown
here, can accumulate
either positive or
negative charges on
the surface of a metal
sphere, thus
generating immense
electric fields.



EXAMPLE 172 Gravity in the hydrogen atom

A hydrogen atom consists of one electron and one proton. In an early, simple model of the hydrogen atom
called the Bohr model, the electron is pictured as moving around the proton in a circular orbit with radius
r= 529 % 107" m. (In Chapter 29, we’ll study the Bohr model and also more sophisticated models of
atomic structure. ) What is the ratio of the magnitude of the electric force between the electron and proton to
the magnitude of the gravitational attraction between them? The electron has mass m, = 9.11 x 107" kg,
and the proton has mass m, = 1.67 X 107 kg.



SOLUTION

SET UP Figure 17.10 shows our sketch. The distance between
the proton and electron is the radius r. Each particle has charge of
magnitude e. The electric force 1s given by Coulomb’s law and
the gravitational force by Newton's law of gravitation.

SOLVE Coulomb’s law gives the magnitude F, of the electric
force between the electron and proton as

|fi"1f-]‘1| _ e’

3
r J"2

F.=k

)
— =M
rne_—'q_llx“:l kgl

I +e B >
| ma= 167 x 0727 li-:}

il L1
II 1
T r=929x10"m *

!

i
A FIGURE 17.10 Our sketch for this problem.

where k = 8.99 % 10° N - m*/C%. The gravitational force F’g has
magnitude F:

where G = 6.67 x 107" N - m*[/kg?. The ratio of the two forces is

ke?\[ r? ke?
Fg N ( rt ][Gmemp] N Gm,m,
[ 8.99 X 10°N - m*/C?
- (ﬁ.ﬁ? % 1071 N-mf,fkgf]
y (1.60 x 1077 C)?
(0.11 x 107" kg) (1.67 x 107 kg)’

e

F,
— =227 x 10%.
FS

REFLECT Inourexpression forthe ratio, all the units cancel and the
ratio is dimensionless. The astonishingly large value of FJF_E,_
about 10""—shows that, in atomic structure, the gravitational force
1s completely negligible compared with the electrostatic force.
The reason gravitational forces dominate in our daily expernience

Continued



exampLE 173 Adding forces

Two point charges are located on the positive x axis of a coordinate system. Charge g, = 3.0 nC 1s 2.0 cm
from the origin, and charge g, = —7.0 nC 1s 4.0 cm from the origin. What is the total force (magnitude and
direction) exerted by these two charges on a third point charge g; = 5.0 nC located at the origin?

2 3
=3.0nC g,=-7.0.C L T4
1 §3=5-0nC 1 E F £ +ve
O 2.0 ,:m_”ﬂi” T . T T 0 %: - direction
4.0 cm I
(a) Our diagram of the situation (b) Free-body diagram for g4
F,— k|¢1‘|ii;3|
( ) ') F.=F, —F
30X 107°C)(50x107°C —
= (8.99 x 10° N - m*/C* — _
( m’/C?) (0020 m)? T 2 1
=337 X 107*N,
= kl'?’-_'ﬁ?;l
Fa3

= (Elgg w lﬂqN-mzllrEE} {T.ﬂ ot lﬂ_qC][j‘D W IG—QC]

(0.040 m)*
= 1.97 x 107*N.



Vector addition of forces

l
a0 |
F = ke L2
Ir I-.\i 3= 0. :L-I"l'l
0 A e
F G.=4,0 il
|I:.1r:{jl-': i ".E? o |"|?h- .l.-ii !
_F'u — Iﬂl.-— ._'\_:.;.-' TI-_-' .
_ .I'-|-_-|_. T 5= 0.40m

{a) Our sketch of the situation

Find x & y components of the forces 1
and 2.

|
]
1
1
W _

(h) Free-body diagram for g

Add all the x forces to get resultant x ’Lf

Add all the y forces to get resultant y
Combine the x and y components
using vector concepts.




17.5 Electric Field and Electric Forces

Definition of electric field
When a charged particle with charge g' at a point P is acted upon by an elec-
tric force F’, the electric field E at that point is defined as
F*r
E=—. (17.2)

r

q
The test charge g' can be either positive or negative. If it is positive, the direc-
tions of E and F" are the same; if it is negative, they are opposite (Figure 17.15).

Unit: In SI units, in which the unit of force is the newton and the unit of
charge 1s the coulomb, the unit of electric-field magnitude is 1 newton per

coulomb (1 N/C).



Electric field is defined as the electric force per unit charge. The
direction of the field is taken to be the direction of the force it would
exert on a positive test charge. The electric field is radially outward
from a positive charge and radially in toward a negative point charge.

Point
charge

Charged
sphere

Charged
cylinder

* Charged parallel
plates

++++++++FF A+

Multiple point o, = ==00 @ s - . .
charges v e

Click on any of the examples above for more detail.

electric force
in Newtons

—

Electric field in .
N/C or volts/m. —

charge in
Coulombs

F
q



A and B exent electric forces on each other.

—F 4 F
B
(a)
B 1s removed; point p ;
P marks its position. E o 1]_[]'[
P g—=0 g’ .
(b}

A test charge placed at F is acted upon by a force
F' due to the electric hield E of charge A. E is the
force per unit charge exerted on the test charge.

“E=Flg
( ——
Test charge g'

(c)



The force on a positive test charge points
in the direction of the electric field.

—

E

=

q F

The force on a negative test charge points
opposite to the electric field.

F E
&



Principle of superposition

The total electric field at any point due to two or more charges is the vector sum
of the fields that would be produced at that point by the individual charges.



Electric Field of Point Charge

F= k4.4,
r

The electric field of a point cllaw

obtained from Coulomb's law:

— F — kQ.H-‘HF l'{"q — kQ.\'HHF{'{"
E
= sourced

( qr r

The electric field is radially outward from the
point charge in all directions. The circles

represent spherical equipotential surfaces.

The electric field from any number of point charges can be obtained from a
vector sum of the individual fields. A positive number 1s taken to be an
outward field: the field of a negative charge is toward it.

This electric field expression can also be obtained by applying Gauss' law.




Electric field in a hydrogen atom and Van der Graff (1m from centre)

Flectrons o he re
orbit T, e
bt - It
V4 A .
Acts as single
- .|.II = i | =
oot Om L B | o Om | o, charge at
ol G =L0 .l ! centre
.'"*H ;_.
! s, ._.___.-'
(a) (h)
q
L
r
(1.60 % 107°C) gl (1.0 X 107 C)

= (8.99 x 10°N - m¥/C?)

E=k

_ 9N - m2/C?
: (529 X 10 " m)? 2 = (399 X 10N mlC) = oy
= 5.14 x 10" NJC. = 0.0 x 10° N/C.

Hydrogen atom is MUCH more



EXAMPLE 17.7 Electric field of an electric dipole



/#ﬁ ! HR <
Efflﬁm ‘ 17.7 Electric Field Lines

/ line

A FIGURE 17.21 The direction of the electric
field at any point is tangent to the field line

through that point.
Field lines always point At each point in space, the electric Field lines are close together where the field is
away from (+) charges field vector is rangent to the field strong, farther apart where it is weaker.
and foward (—) charges. line passing through that point. E

{a) A single positive charge (b} Two equal and opposite charges (a dipole) {e) Two equal positive charges



NOTE » There may be a temptation to think that when a charged particle
moves in an electric field, its path always follows a field line. Resist that
temptation; the thought is erroneous. The direction of a field line at a given
point determines the direction of the particle’s acceleration, not its veloc-
ity. We've seen several examples of motion in which the velocity and
acceleration vectors have different directions. <



Between the plates of the capacitor, the
electric field is nearly uniform, pointing from
the positive plate toward the negative one.

! A
"w\ i%f"’?';:"“;* /
A FIGURE 17.23 The electric field produced ~Lal v . -
by a parallel-plate capacitor (seen in cross - _ _
section). Between the plates, the field is — . |
nearly uniform. . . -
- + 4 = - -
+ - -
—F - =
.,-""- _\-1'--\.\_
. o _ B _
+ 4 - ——
/L

N



17.8 Gauss’s Law and Field Calculations

Rather than adding many point charges as in
coulombs law we can image a Gaussian surface

where the electric field goes through.
Gauss’s law is a relation between the field at all the

points on the surface and the total charge enclosed
within the surface.

First we need to define electric flux.



Electric flux

Electric field E is perpendicular to area A;
the angle between E and a line perpendicular to
the surface is zero.

The flux is Py = EA.

The definition of electric flux involves an area A and the electric field at vari-
ous points in the area. The area needn’t be the surface of a real object; in fact, it
will usually be an imaginary area in space. Consider first a small, flat area A per-
pendicular to a uniform electric field F (Figure 17.24a). We denote electric flux
by ®.: we define the electric flux @ through the area A to be the product of the
magnitude E of the electric field and the area A:

@, = EA.

Roughly speaking, we can picture @ in terms of the number of field lines that
pass through A. More area means more lines through the area, and a stronger field
means more closely spaced lines and therefore more lines per unit area.



EI'}E — EJ_A

Area A is tilted at an angle ¢ from the
perpendicular to E.
The flux is @z = EA cos ¢

T

Area A is parallel to E (tilted at 90° from
the perpendicular to E').
The flux is ®; = EA cos 90° = 0.



This can be
compared to water
flow.

A, =Acos ¢ A

"l. .-"-.::-\'.\:'. 4
2 |

N, L | b
"-' L

(b}



Gauss’s law

The total electric flux @, coming out of any closed surface (that is, a surface
enclosing a definite volume) is proportional to the total (net) electric charge
()1 Inside the surface, according to the relation

2E, AA = A7kQ - (17.7)

The sum on the left side of this equation represents the operations of dividing
the enclosing surface into small elements of area AA, computing E| AA for
each one, and adding all these products.

Op = SE, AA = 47kg. = QE““‘].
0




Gauss's Law

The total of the electric flux out of a closed surface
1s equal to the charge enclosed divided by the

permittivity.
AD = EAA E
3 Q The sum of
@ — the flux is
AA lsitiic - 8 prog:mon'al
¢ to the tota
perpendicular 0 charge enclosed.




In terms of calculus (just for
interest)

Flux ¢ = [E.S54

Gauss = PE.5A = “ene

€o



exampLE 17.10 Field due to a spherical shell of charge Thin spherical shell with total charge g

o

A positive charge g 1s spread uniformly over a thin spherical shell of radius R (Figure 17.29). -
Find the electric field at points inside and outside the shell. /

[
|

\

Inside the shell (r << R): The Gaussian surface has area
47rr?. Since, by symmetry, the electric field is uniform over the
Gaussian sphere and perpendicular to 1t at each point, the electric
flux is @ = EA = E(4qr"). The Gaussian surface is inside the
shell and encloses none of the charge on the shell, so 0, = 0.
Gauss’s law @ = Q,../€, then says that @, = E(4qr?) =
0. so E = (). The electric field is zero at all points inside the shell.

Outside the shell (r = R): Again, @, = E(47r°). But now
all of the shell i1s inside the Gaussian surface, so (.. = g.
Gauss's law ®, = 0. [e, then gives E(47r?) = gle,. and it
follows that

E=—2 %
dreyr- re



E
I

E(R) = k%

Inside the shell, the

electric field is zero: |

E=0 E(R)j4

E(R)f9

(yaussian surfaces
atr = 2R and r = 3R

I
I I
I I
I I
| |
Outside the shell, the magnitude
_-of the electric field decreases with
the square of the radial distance
from the center of the shell:

I
.. | E=k—L
.rl_ I r—

% | |

n I
A I I I-'f'

0




The charge g is distributed over the
surface of the conductor. The situation
is electrostatic, so E = 0 within the
conductor.

+ E =0within |
' + conductor ||
b 4

+ +fi il

{a) Solid conductor with charge g'

For E to be zero at all points on the
Gaussian surface, the surface of the
cavity must have a total charge —g.

Because E =0 at all points within the
conductor, the electric field at all points
on the Gaussian surface must be zero.

ib) The same conductor
internal cavity

(e} An isolated charge g is placed in
the cavity

A FIGURE 17.31 The charge on a solid conductor, on a condactor with a cavity, and on a conductor with a cavity that

contains a charge.

(because the situation is still electrostatic — no
moving charges so no electric field in the conductor
must be zero)



Once the ball touches the bucket, it is

Charged ball induces charges on the part of the interior surface; all the

charge moves to the bucket’s exterior.
Metal lid

Insulated —
thread s Charged
% 'lt:]ﬂlnlleClI]'lg interior and externior Metal lid
a of the bucket. /
- @ + — cHe+ o+ 1t
T L - .
L 4 L gy ¥
g i el | 4
-1!-‘.__.“-.- ) - % ) .._.-' _.-_::.--.-.__ -l-.'_'l" '|I'+ I'. I .h'l
Ml:lﬂ]. _ - T e + i
container Insulating W ¥ ) [
/ oLl ry Y ALY T e
S i e g 4
4, % + .
(a) - +
) r,:y+ B A
.'+ .I
+
YW |
T S e + S

{h) The same conductor with an
internal cavity

(¢) An isolated charge g is placed in

Faraday Ice Pail

The surface of the ball becomes, in effect, part of the cavity surface. The situation is
now the same as Figure 17.31b; if Gauss’s law is correct, the net charge on this surface

must be zero. Thus, the ball must lose all its charge. Finally, we pull the ball out, to find

that it has indeed lost all its charge.



Faraday cage

The field induces charges on the left
and nght sides of the conducting box.

The total electric field inside the box 1s
zero; the presence of the box distorts
the field in adjacent regions.

Conducting box

- - -
i = I‘.I -
. ; . T
A Application A Faraday cage when you ——— ——
need one. If you find yourself in a thunder- i -
storm while driving, stay in your car. If it =1 v
. - - - Z - z == +‘V .
gets hit by lightning, it will act as a Faraday \ {
cage and keep you safe. E'* " E=0 +‘" m E
———f +I e
- {— +1 -
- |+
- s +/,." -
7F E = ~ — bi
P
——— —_—
- _—— -
(a) (b)

A FIGURE 17.34 (a) The effect of putting a conducting box (an electrostatic shield) in a
uniform electric field. (b) The conducting cage keeps the operator of this exhibit perfectly
safe.



SUMMARY

Electric Charge; Conductors and Insulators

{Sections 17.1-17.3) The fundamental entity in electrostatics is elec-
tric charge. There are two kinds of charge: positive and negative.
Like charges repel each other; unlike charges attract. Conductors
are materials that permit electric charge to move within them.
Insulators permit charge to move much less readily. Most metals
are good conductors; most nonmetals are insulators.

All ordinary matter is made of atoms consisting of protons,
neutrons, and electrons. The protons and neutrons form the nucleus
of the atom: the electrons surround the nucleus at distances much
greater than its size. Electrical interactions are chiefly responsible
for the structure of atoms, molecules, and solids.

Electric charge 1s conserved: It can be transferred between
objects, but isolated charges cannot be created or destroyed. Elec-
tric charge is quantized: Every amount of observable charge is an
integer multiple of the charge of an electron or proton.

Like charges repel.

Unlike charges attract.




Coulomb’s Law

{Section 17.4) Coulomb’s law is the basic law of interaction for P

point electric charges. For point charges g, and g, separated by a __‘_a_ ________ a_,.,
distance r, the magnitude F of the force each charge exerts on the  F, | g, g1 Fionz
other is

et r >
F=k|¢i‘|€-'2| (7.1 eql S @

P gy Faon1 F)on2 d2

The force on each charge acts along the line joining the two
charges. It is repulsive if g, and g, have the same sign, attractive if
they have opposite signs. The forces form an action—reaction pair
and obey Newton’s third law.

Electric Field and Electric Forces
(Sections 175 and 17.6) Electric field, a vector quantity., 15 the

force per unit charge exerted on a test charge at any point, pro- E=Flg
vided that the test charge 1s small enough that it does not disturb —
Test charge g’

the charges that cause the field. The principle of superposition
states that the electric field due to any combination of charges is
the vector sum of the fields caused by the individual charges.
From Coulomb’s law, the magnitude of the electric field pro-
duced by a point charge is

E = k'ij. (17.4)

r



Electric Field Lines

(Section 17.7) Field lines provide a graphical representation of elec-
tric ﬁeldg; A field line at any point in space is tangent to the direc-
tion of E at that point, and the number of lines per unit area
(perpendicular to their direction) i1s proportional to the magnitude
of E at the point. Field lines point away from positive charges and
toward negative charges.

Gauss’'s Law

(Section 17.8) For a uniform electric field with component E | per-
pendicular to area A, the electric flux through the area is
@, = E | A (Equation 17.6). Gauss's law states that the total elec-
tric flux ® out of any closed surface (that is, a surface enclosing a
definite volume) is proportional to the total electric charge (.
inside the surface, according to the relation

SE, AA = 47k0,,,. (17.7)

4AA _

AA  The electric flux through
the two concentric spheres
is the same.

Charges on Conductors

(Section 17.9) In a static configuration with no net motion of charge,
the electric field 1s always zero within a conductor. The charge on a
solid conductor is located entirely on its outer surface. If there is a
cavity containing a charge +¢g within the conductor, the surface of
the cavity has a total induced charge —g.

Object with
net charge g

For E to remain zero across
the Gaussian surface, the
surface of the cavity must

| have a charge —g.

ﬂj}z Surface charge = g’ + 4.

Gaussian
surface A



¥ Electric Potential
') and Capacitance




18.1 Electric Potential Energy

Remember the equations from mechanics and the
fact that the work done is change in energy

W,., =Fscos(@®) = U, —U, =W, = AKE



W,., =Fscos(®) = U, —U, =W, = AKE

Apply this to electric fields

Work done on charge g' by the constant electric
Test charge force between the plates: W, = g'Es

\ ;
W,.p =Fs=q Es

+ + + +  +
o Sy
B . “~..J,L--- ']'I1:.' -:I-:-_:1riq._'. force
- has only a
- - g e component, so
Electric potential energy S f’ . . the work it does

independent of

! | TF = q'E on the charge is
\ $

the charge’s path.

-..Ir.:" ¥
— — - — -

4 FIGURE 18.2 A test charge ¢" moves from
point @ to point £ in a uniform electric field.



Comparing
gravitational and
electrical
conservative
forces

Object moving in a
uniform gravitational

field:
W= =AU, = mgh

=

(a)

Charge moving in
a uniform electric

freld:
W = —_"l.li'llr._ — :.lf.lr:-.‘-'

+ + + o+

I
E

-

(b}

A FIGURE 18.1 Because electric and gravita-
tional forces are conservative, work done by
either can be expressed in terms of a potential

energy.



“ s
Positive charge moves in the direction of E: Positive charge moves opposite to E:

= Field does positive work on charge; = Field does negative work on charge;
= U decreases. ¥ » U/ increases. ¥
L !
- - - - - - - - - -
E E
-+ a — — KR biF)
F=gE A
|
|
|
I |
| 0
Ya v Vi |
T * ——a
Vb Va F=aE
i | 0 ] ] ) q i
(@) (hb

A FIGURE 18.3 The work done by an electric field on a positive charge moving (a) in the
direction of and (b) opposite to the electric field.



- - - - 4 " - ;
MNegative charge moves in the direction of E: MNegative charge moves opposite to E:

* Field does negative work on charge; = Field does posifive work on charge;
» U/ increases. I » Udecreases. {
- - - - - - - - - -
E F= qf E
— i — b [_—::
A
I |
|
Y |
|
¥a ¥ Vb F=gE
b o
¥b Ya
¥ | 0 1 1 o ]
ia) (b)

A FIGURE 18.4 The work done by an electric field on a negative charge moving (a) in
the direction of and (b) opposite to the electric field.



examPLE 18.1 Work in a uniform electric field

Two large conducting plates separated by 6.36 mm carry charges of equal magnitude and opposite sign,
creating a uniform electric field with magnitude 2.80 % 10° N/C between the plates. An electron moves
from the negatively charged plate to the positively charged plate. How much work does the electric field do
on the electron?

AY £/ YA,
E | T
E£=2.% xlo° Nfe

a =6.36 mm

-
[_
E

r-:_.-ﬂ_.

sl
A S R A ,f'__f?//,,i/;//_,zf

SOLVE The force and displacement are parallel; the work W
done by the electric-field force during a displacement of magni-

tude dis W = F.dcosd with d = 0, so

W= F,d = eEd
= (1.60 % 107" C)(2.80 x 10°N/C)(6.36 x 107 m)
= 2.85 x 1078 7.




Potential Energy of Point Charges

It’s useful to calculate the work done on a test charge g’ when it moves in the
electric field caused by a single stationary point charge g.

Point charge g Test charge g°
(a) Test charge ,# \
moves from a to b. o “?___}___:"___E__l__ 5:_}_;, *
| } :._\L! i |
: | = |
x
1 I qq' | | |
. i | | |
Fr=k A2 [ [ [
| | |
| | |
qq’ I I |
y’;ﬂ—l —————————— Shaded areas equal the work I
I done on the test charge over |
| the respective displacements. I
I i |
| | |
| | |
| | |
| | |
A A T '
3 |
ib} Force on the test b= I | Ay ! I
charge as a function I ’—h'-l | ¥
of position. i} a x x+ MAx b )

4 FIGURE 18.6 A test charge ¢" moves radially along a straight line extending from charge g.
As it does so, the electric force on it decreases in magnitude.

kqq' (1 1
Wa-p = — =kqq "




Potential energy of point charges
The potential energy U of a system consisting of a point charge g located in

the field produced by a stationary point charge g, at a distance r from the
charge, 1s

r

U= kqf | (18.8)




fEUE 0 E)  Change in potential energy
Analysis 18.1 , . , ,
Consider two positive point charges g, and ¢,. Their

potential energy 1s defined as zero when they are infinitely far
apart, and 1t increases as they move closer. If g, starts at an imtial

distance r; from ¢, and moves toward g, to a final distance
r, — Ar (where Ar 1s positive), by how much does the system’s
potential energy change?

SOLUTION The electric potential energy of the two charges

depends on the distance r between them: U = k(g,q, ) [r. Initially,

the distance between them 1s r,. After ¢ moves a distance Ar

toward g,. the distance 1s r, — Ar. The change in potential energy

depends on the reciprocal of these distances, so C must be the

answer. More formally, the change 1n potential energy 1s
AU=U,— U = kaq g B k‘?l"—?l‘

r, — Ar r




Electric Potential Energy

Potential energy can be defined as the capacity for doing work which arises
from position or configuration. In the electrical case, a charge will exert a
force on any other charge and potential energy arises from any collection of
charges. For example, if a positive charge Q 1s fixed at some point in space.
any other positive charge which 1s brought close to it will experience a
repulsive force and will therefore have potential energy. The potential energy
of a test charge q in the vicinity of this source charge will be:

where k 1s Coulomb's constant.

U= k—Qq In electricity, it is usually more convenient to
r use the electric potential energy per unit
r q charge, just called electric potential or
voltage.

Q Application:Coulomb barrier for nuclear
fusion

Show

Energy in electron volts




Z.ero Potential

The nature of potential 1s that the zero point 1s arbitrary: it can be set like the
origin of a coordinate system. That is not to say that it 1s insignificant; once
the zero of potential 1s set. then every value of potential 1s measured with
respect to that zero. Another way of saying it 1s that it 1s the change 1n
potential which has physical significance. The zero of electric potential
(voltage) 1s set for convenience, but there 1s usually some physical or
geometric logic to the choice of the zero point. For a single point charge or
localized collection of charges. it 1s logical to set the zero point at infinity.
But for an infinite line charge, that is not a logical choice, since the local
values of potential would go to infinity. For practical electrical circuits, the
earth or ground potential is usually taken to be zero and everything 1s
referenced to the earth.

Zero of potential at infinity
Zero of mechanical potential energy




q

A q1 , 42 | 43

a @y
g’

A FIGURE 18.7 Potential energy associated

with a charge g" at point @ depends on

charges g,. ¢». and g; and on their respective
distances ry, ry, and ry from point a.

Making U = 0 at infinity is a convenient reference level for
electrostatic problems, but in circuit analysis other
reference levels are often more convenient.

_ U=kq'| 2 +2+32 +...



e it ]

18.2 Potential

A Application Really high voltage.

A lightning bolt occurs when the electric
potential difference between cloud and

ground becomes so great that the air
between them ionizes and allows a current
to How. A typical bolt discharges about

107 J of energy across a potential difference

of about 107 V. In a major electrical storm,
the total potential energy accumulated and

discharged is enormous.



Definition of potential
The electric potential V' at any point in an electric field is the electric potential
energy U per unit charge associated with a test charge g' at that point:

V=— or U=gq'V. (18.10)

Potential energy and charge are both scalars, so potential 1s a scalar quantity.
Unit: From Equation 18.10, the units of potential are energy divided by
charge. The SI unit of potential, 1] ,I'C, 1s called one volt (1 V), in honor of

the Italian scientist Alessandro Volta (1745-1827):

1 V= 1volt = 1J]/C = 1 joule/coulomb.



In the context of electric circuits, potential is often
called voltage.

For instance, a 9 V battery has a difference in
electric potential (potential difference) of 9 V
between its two terminals. A 20,000 V power line
has a potential difference of 20,000 V between
itself and the ground.



To put Equation 158.2 on a “work per unit charge™ basis, we divide both sides
by g', obtaining
wﬂ4b Uﬂ Ub
= —— =V, =V, (18.11)

r r

q q q

where V, = U,/q’ is the potential energy per unit charge at point @ and V/, is that at
b. We call V_ and V), the pofential at point a and potential at point b, respectively.

The potential difference V, — V), is called the potential of a with respect to b.




exampLe 182 Parallel plates and conservation of energy

A 9.0V battery is connected across two large parallel plates that are separated by 4.5 mm of air, creating a
potential difference of 9.0 V between the plates. (a) What 1s the electric field in the region between the
plates? (b) An electron is released from rest at the negative plate. If the only force on the electron is the elec-
tric force exerted by the electric field of the plates, what 1s the speed of the electron as it reaches the positive

plate? The mass of an electronis m, = 9.11 % 107" kg|

r"—“‘m
[ f"+.r',r"+f’ f+,-¢,f‘+f eyl *.,;“
b )
Sl |
9.0V d =H.5 mm
VFFsig
LY —Grnll,-J
Y - A R
L —Iff—ff—#;f“ff—x .
— / |
mE:C'..H m'||:}'_j' Ra
Ve — Vo 90V U
E= = = 2.0 % 10° V/m.

d 4.5 % 1077 m



Part (b): Conservation of energy applied to points a and b at
the corresponding plates gives

E,-_-:_I' Uu=Kb+U.['.-'
Also, UV = g'V, where g' = —e, the charge of an electron. Using
this expression to replace U in the conservation-of-energy equa-
tion gives
K +q'Vy= Ky + g’V
The electron is released from rest from point a. so K, = 0. We
next solve for K
Kb — Efr[:li"'ru — 'I',-"b} — _f"{ 'h"':_-! — ll"rlr_-..J — +f"|:: 'h"'rb — li"'ruj
= (1.60 % 107 C)(9.0V)
= 1.44 x 107"°1].

Then K, = tm,v; gives

2K, 2(1.44 x 1071%7) .
vy = = —— = 1.8 X 10°m/s.
m, 9.11 % 107 ke




Potential of a point charge
When a test charge g’ is a distance r from a point charge g, the potential V' is
U q

V=—=k- (18.12)
q '

where £ is the same constant as in Coulomb’s law (Equation 17.1).

Similarly, to find the potential V' at a point due to any collection of point
charges gq,. ¢». ¢. . . . at distances ry, r.. ra. . ... respectively, from g'. we divide
Equation 189 by g":

U :
T . LN . I | (18.13)

o U T I




Potential Reference at Infinity

The general expression for the electric potential as a result of a point charge
Q can be obtained by referencing to a zero of potential at infinity. The

expression for the potential difference is:

Taking the limit as r,—o0 gives simply

kQ 0O

r 4rme,r

V =

tfor any arbitrary value of . The choice
of potential equal to zero at infinity is
an arbitrary one, but is logical in this
case because the electric field and force
approach zero there. The electric

potential energy for a charge q atr is

then

_*q

r

U




EXAMPLE 18.3 Potential of two point charges

Two electrons are held in place 10.0 cm apart. Point a is midway
between the two electrons, and point b is 12.0 cm directly above
point a.

Calculate the electric potential at point a and at point b.

SET UP Fipure 18.9 shows our sketch. Point b is a distance

rp = V(12.0cm?) + (5.0 cm)? = 13.0 cm from each electron. ba
SOWE Part (a): The electric potential V at each point is the sum F w*
of the electric potentials of each electron: ¥V = V|, + V; = .f;q—l + f;l ',
ﬁ% withg, = g¢; = —e. At pointa, ry = r, = r, = 0.050 n:| 50 Et “..

TP _ 2ke _ 2(899X 10°N -m*[C?)(1.60 x 107 C) S

: Iy 0.050 m ! - \
= 58 % 1078V, / 4

Atpointh, n = r, = r, = 0.130 m, so Jx"' S | L I"\

v, = 2ke _ 2(B.99 x 10°N - m*/C?)(1.60 x 107 C) S He———0

Iy 0.130 m

= —22 % 107} V.



Parallel plates

by
YA S
L L‘.L‘ .;P -
E
n |
| @ ij" .-_-l
| y
| I
b{O

.

N i

We choose the potential

V to be zero at y = 0 (point
b in our sketch).

Remember that potential
is simply potential energy
per unit charge.

SOLVE The potential energy U for a test charge g" at a distance y
above the bottom plate is given by Equation 18.5, U = g'Ev. The
potential V' at point v is the potential energy per unit charge,
V= Ulg', so

V= Ey.

Even if we had chosen a different reference level (at which
V=10), it would still be true that V; — Vi, = Ev. At point a,
where y = dand V, = V, V; — V, = Ed and

. 'h"'r_g - 1":1-. . L"ru&

- d 4

E



18.3 Equipotential Surfaces

An equipotential surface is defined as a surface on which
the potential is the same at every point.

No point can be at two different potentials, so
equipotential surfaces for different potentials can never
touch or intersect.

The potential energy for a test charge is the same at every
point on a given equipotential surface, so the field does no
work on a test charge when it moves from point to point
on such a surface.



—— Electric field lines

—— Cross sections of equipotential

surfaces at 20V intervals ov
\ \
| Ilu" IIII .‘}
f !
LSt~
P
/ ¢,§ rr‘""f’i. T g
P S R ;
\ N IS
My sy v . /
[ T \
I |
(a) A single positive charge ib) An electric dipole

—_— -
X s\ —
a4 i = Sni
b AT A e S|
P W Yo =="s% L f'\ .

(c) Two equal positive charges

A FIGURE 18.11 Equipotential surfaces and electric field lines for assemblies of point charges. How would the diagrams change if the charges

were reversed?



A FIGURE 18.13 When charges are at rest, a
conducting surface is always an equipotential
surface. Field lines are perpendicular to a
conducting surface.



E must be perpendicular to the surface at every point.
Field lines and equipotential surfaces are always
mutually perpendicular.

We can prove that when all charges are at rest, the
electric field just outside a conductor must be
perpendicular to the surface at every point.

It follows that, in an electrostatic situation, a conducting
surface is always an equipotential surface.



Electric field represented as potential gradient
The magnitude of the electric field at any point on an equipotential surface
equals the rate of change of potential, AV, with distance As as the point
moves perpendicularly from the surface to an adjacent one a distance As
away:
AV

E = Ay (18.14)
The negative sign shows that when a point moves in the direction of the elec-
tric field, the potential decreases. The quantity AV/As, representing a rate of
change of V with distance, 1s called the potential gradient. We see that this is
an alternative name for electric field.
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Equipotential
surfaces within a
capacitor
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18.4 The Millikan Oil-Drop Experiment

p

' Atomizer

\ 1

Atomizer creates small
charged oil droplets

Plate a

Telescope

-

4 il

Plate &

(a) Schematic diagram of apparatus

-

'i'! Measure voltage at which droplet
hovers. The observer adjusts the
voltage across the plates until the
droplet hovers motionless —
meaning that the electric force on
the droplet just counters its weight.

TTm—— 'I-‘l’=lﬂg

To find the droplet’s charge g, we
still need the droplet’s mass.
(b}

'gﬂ' Find droplet’s terminal speed. The
voltage is switched off, letting the
droplet fall. From its terminal speed
v, and the air drag force Fp,, its radius
can be calculated. Its radius and
known density yield its mass.

o
A
w = mg
The droplet’s charge g can now be

found.
el

A FIGURE 18.16 The Millikan oil-drop experiment, which demonstrated that charge is quantized and provided the first determination of e.



Droplet stationary
1 Measure voltage at which droplet qE =mg

hovers. The observer adjusts the

voltage across the plates until the So

droplet hovers motionless —

meaning that the electric force on q =
the droplet just counters its weight.

7| &

we can find E from
E =

and find m from

QU <

E:FL'I?
i

W — Mg 4.7Tr2
m=pV =p——

and r from terminal velocity

To find the droplet’s charge g, we
still need the droplet’s mass.



Now we can measure the charge on a droplet.
Each droplet will have a different charge (+ or -).

So with MANY measurements and knowing that
q=1ne
We can determine e.

(Where n is an integer and e is the charge on an
electron)



An electron has a charge of

1.602 x 1071 C

Electrovolt

An electrovolt is a unit of energy

If we move an electron through a potential difference of
1V

AU =qV =1.602x 10719 x 1

leV =1.602x 10719



18.5 Capacitors

A FIGURE 18.17 An assortment of practical
capacitors.
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Definition of capacitance
The capacitance C of a capacitor is the ratio of the magnitude of the charge Q

on either conductor to the magnitude of the potential difference V,;, between
the conductors:

_9
=9 (18.15)

Unit: The SI unit of capacitance is called 1 farad (1 F), in honor of Michael
Faraday. From Equation 18.15, 1 farad is equal to 1 coulomb per volt (1 C[V):

1F=1CJV.

In circuit diagrams, a capacitor is represented by either of these symbols:

—H e



[

=

tor

Q\

aci

)

p

)

e

e

)

C

C

ate

C

i\ =

-

)

P

~~

wrallel

N_A

=

?\(

Wire Plate a, area A
-

—
g s

V.
e
Potential /:k A_/_-_Q

difference = V;

_ L ARl

Wire Plate b, area A

ia) A basic parallel-plate capacitor

Ax++++++ ++ [
SRR ERRER B AL

{b) Electric field due to a parallel-plate capacitor

A FIGURE 18.19 The elements of a parallel-
plate capacitor.



We can define the surface charge density as

Q

O'=Z

Where Q is the charge on the plates and A is the area of the plates

E':—:i
€y €pA

k = 1/47e,, where e = 8.854 x 1072 C*IN - m".

Capacitance of a parallel-plate capacitor

The capacitance C of a parallel-plate capacitor in vacuum 1s directly propor-
tional to the area A of each plate and inversely proportional to their separa-
tion d:

0 A
C=—=¢g—. 18.16
V. Eud ( )



This gives a value of free space permittivity

€, =8854187817x 10 F/m=885x10"F /m
which in practice is often used in the form

1
dre,

K= =8.987552 x 10° Nm* / C* = Coulomb’s constant



Capacitors

Capacitance 1s typified
by a parallel plate
arrangement and 1s
defined in terms of
charge storage:

+
+ ++ ++ i + : = V
Unit = coulomb = Farad
- volt
Capacitor
where

A battery will transport charge from one plate
to the other until the voltage produced by the )
charge buildup is equal to the battery voltage. e Q =magnitude of

charge stored on
each plate.

o V =yvoltage
applied to the
plates.




EXAMPLE 18.7 Properties of a parallel-plate capacitor

The plates of a parallel-plate capacitor are 5.00 mm apart and 2.00 m? in area. A potential difference of
10.0 kV 1s applied across the capacitor. Compute (a) the capacitance, (b) the charge on each plate, and
(c) the magnitude of the electric field in the region between the plates.

oo EA (8.85 % 1072 F/m)(2.00 m?)
a d 5.00 % 1077 m

= 3.54 x 107°F = 0.00354 yF.
K i "”“DD"&%
V = 10, 0k 7T d = 5.00mm
[l =Y

Q=CV,=1(354x107F)(1.00 x 10* V)
=354 x 107°C = 354 4C.

V.,  1.00 % 10*V
E: = =E.m}{lﬂﬁv 3
c d  500% 10°m fm




18.6 Capacitors in Series and in Parallel

Capacitors in series:

* The capacitors have the same charge (2.

* Their potential differences add:

I Ll ||_": (1] - Ii':-'ll:'

V.,
a
T S
+QEElEE
—o—r—="5C1 V.=V
ab =V - o
TR
W . ¥

b
(a) Two capacitors in series

Equivalent capacitance

i
3 L
15 less than the indi-
Charge is 10 vidual capacitances:
v 1h-.'..-a|'n-.' i 0
as for the —===Cagq ™ T
individual —0
capacitors. 1 _ 1 1
C. C, Cs
Y g

b
(b) The equivalent single capacitor



Equivalent capacitance of capacitors in series

When capacitors are connected in series, the reciprocal of the equivalent
capacitance of a series combination equals the sum of the reciprocals of
the individual capacitances:

| 1 | |
. — C. + G + 2 + e (capacitors in series) (18.17)

The magnitude of charge is the same on all of the plates of all of the capaci-

tors, but the potential differences across individual capacitors are, in general,
different.



Capacitors in parallel:

* The capacitors have the same potential V.

* The charge on each capacitor depends on its
capacitance: ¢, = C,V, 0, = ;W

i
L

A

++ ]+ + + |+

ia) Capacitors connected in allel d . .
! Pt A Charge is the sum of the

individual charges:

1."' C‘Eq++++++g=Q]+Q]
Equivalent capacitance:
" - Coq = € + G

(b} The equivalent single capacitor



Equivalent capacitance of capacitors in parallel
When capacitors are connected in parallel, the equivalent capacitance of the
combination equals the sum of the individual capacitances:

Cou =G+ G+ G+ (capacitors in parallel)  (18.18)



Capacitor Combinations

Capacitors in parallel add ...

Ci

C

ifCy =

then ng =Cy+ Cot ..

ur Co=

Capacitors in series combine as reciprocals ...

C

Co

I U I

mama CE“ C1
Coq -

Cz
HF

HF



EXAMPLE 18.8 Capacitors in series and in parallel

Two capacitors, one with C; = 6.0 uF and the other with C, = 3.0 yF, are connected to a potential differ-

ence of V;, = 18 V. Find the equivalent capacitance, and find the charge and potential difference for each
capacitor when the two capacitors are connected (a) in series and (b) in parallel.

SOLUTION

SET UP Figure 18.24 shows our sketches of the two situations.
We remember that when capacitors are connected in series, the

charges are the same on the two capacitors and the potential dif-
ferences add. When they are connected in parallel, the potential
differences are the same and the charges add.

SOLVE Part (a):

Thus,

- C,C,  (60puF)(3.0 uF)

M C,+C, 60uF+30uF

= 2.0 uF.

The charge is Q = C,,V = (2.0 uF) (18 V) = 36 uC, the same
for both capacitors. The voltages are

The equivalent capacitance for the capacitors Q 36uC Q@ 36uC
in series is given by Equation 18.17: V) = E 6.0 uF =60V and V= C, 30 uF = 120V.
1 1 | C, + G
— =— 4+ —= =4 Note that V, + V, =V, (1.e., 60V + 12V = 18 V).
C. G G oG ote that V, + V2 = Vip (e :
A
&
J'I:j ++ CII=!.";;|:|},|,.F-
~QE=TT
V= 18V
QST ¢ 30 uF
~Q==]==

s



Part (b): When capacitors are connected 1n parallel, the poten-
tial differences are the same and the charges add. The equivalent
capacitance i1s given by Equation 18.18:

Cy = C, + Gy = 6.0 uF + 3.0 uF = 9.0 uF.

The potential difference for the equivalent capacitor 1s equal to
the potential difference for each capacitor: a

ll'f|_=l|""1=l|""ﬂ!,=]-gv.

The charges of the capacitors are V=18V

i

0, = C,V = (60uF)(18V) = 108 uC, i

0, =GV=(30uF)(18V) =54 uC.
b

The total charge 15 0, + (), = Q, so the charge on the equivalent
capacitoris Q = C,V = (9.0 uF) (18 V) = 162 uC.

™



18.7 Electric Field Energy

Many of the most important applications of capacitors
depend on their ability to store energy.

The capacitor plates, with opposite charges, separated
and attracted toward each other, are analogous to a
stretched spring or an object lifted in the earth’s
gravitational field.

The potential energy corresponds to the energy input
required to charge the capacitor and to the work done
by the electrical forces when it discharges. This work is
analogous to the work done by a spring or the earth’s
gravity when the system returns from its displaced
position to the reference position.



Energy in a capacitor

V_AW
=g
AW=VAq=%Aq

vV vV .,
U=Wiotar = D) Q= > CV=§CV

Where V/2 is the average potential
difference during the charging process.



Energy density in an Electric field

€EpA

Since C=7 and V = Ed

1
Energy QCVZ 1
u = energy density = o == EEOEZ




EXAMPLE 18.9 Stored energy

A capacitor with C; = 8.0 uF is connected to a potential difference V;; = 120V, as
shown in Figure 18.25a. (a) Find the magnitude of charge (J; and the total energy
stored after the capacitor has become fully charged. (b) Without any charge being
lost from the plates, the capacitor 1s disconnected from the source of potential differ-
ence and connected to a second capacitor C; = 4.0 yF that 1s imitially uncharged
(Figure 18.25b). After the charge has finished redistributing between the two capaci-
tors, find the charge and potential difference for each capacitor, and find the total
stored energy.

T [
+ 4 +++QI +Q2++ + +=
C) —— — n — 4,
V=120V T —1 C, = 8.0 uF I:___—Q —Qj::f:* 4.0 uF
— Iy === i :
Wl “]J
— i

(a)



V= 120V JEU TR T
=

(a)

SOLVE Part (a): For the ongimnal capacitor, we use the poten-
tial difference and the capacitance to find the charge:

Oy = C\Vy, = (8.0 uF)(120V) = 960 uC. To find the stored
energy, we use Equation 18.109:

U =%Qﬂvﬂ =%(*§lﬁﬂ % 107°C) (120 V) = 0.058 1.



+0, 0,

Iy
1
1
||

i+
— C; = 40puF
—h — s

(b}

Part (b): From conservation of charge, (J;, + (J; = (J;. Since
V 1s the same for both capacitors, 0, = C,V and (0, = G, V.

When we substitute these eguations into the conservation-of-
charge equation, we find that C,V + G,V = @, and

v — Gy _E'-‘ﬁl].;_-,{:
C+ G 12uF

Then Q, = C,V = 640 uC and @, = C,V = 320 uC.

The final total stored energy 1s the sum of the energies stored
by each capacitor:

1 1 1 1
EQIF + EQEF = E[:Q] +0,)V= EQ&V

%(qm % 1076C) (80 V) = 0,038 J.



18.8 Dielectrics

Placing a solid dielectric between the plates of a capacitor
serves three functions.

First, it solves the mechanical problem of maintaining two
large metal sheets at a very small separation without actual
contact.

Second, many insulating materials can tolerate stronger
electric fields without breakdown than can air.

Third, the capacitance of a capacitor of given dimensions is
greater when there is a dielectric material between the
plates than when there is air or vacuum.



Yacuum

Electrometer
{measures potential
difference across
plates)

(b}

== Adding the dielectric
reduces the potential
across the capacitor.

Conductor
(metal foil)

Conductor =l

(metal foil) Dielectric
(plastic sheet)

A FIGURE 18.26 A common type of parallel-
plate capacitor is made from a rolled-up sand-
wich of metal foil and plastic film.




Dielectric constant of the material, K

TABLE 18.1 Values of dielectric constant K at 20°C

Material K Material K
Vacuum I Polyvinyl chloride 3.18
Air (1 atm) 1.K59 Plexiglas® 3.40
Air (100 atm) 1.0548 Glass 5-10
Teflon® 2.1 Neoprene 6.70
Polyethylene 2,25 Crermanium |6
Benzene 228 Glycerin 42.5
Mica 36 Water 804
Mylar® 3.1 Strontium titanate 310

Where C, is the capacitance in a vacuum



For a given charge density (F;, the induced
charges on the dielectric’s surfaces reduce the
electric field between the plates.

Vacuum Dielectric
‘ -
) — i) P, — O
—0; (LF
+ - : - -
+ — i E—g- +|—
-+ E :
+ - +- +|-
+ - + -
+ — +|— +|—-
+ - :
nduced.,
- *I” charges I
+ :
+ +- +|-
+ :
+ +- +|-
+ - :
+ - +- +[-
0 05
i —iT o —iT
(a) ih)

A FIGURE 18.28 The effect of a dielectric
on the electric field between the plates of a
capacitor.



SOLVE Part (a): The presence of the dielectric increases the
capacitance. Without the dielectric, the capacitance is

/S A——
o _ @A _ (885 X 1072 Flm) (0200 m?) I [
d 0.010 m v,=3~|.oo o ‘EEEIIGHLGG B
=1.77 x 107V F =177 pF. ” ‘ hQE__—_J
The onginal charge on the capacitor is i
&
0 = CVy = (1.77 x 107"°F)(3.00 x 10° V) BEFORE
=531 x 1077 C = 0.531 uC.
After the dielectric is inserted, the charge is still @ = 0.531 uC,
but now V = 1.00 kV, so
-6
c=L2 _0BLXI07C _ o3 5 10-9F = 531 pF.
Vv 1.00 = 10° V
__'+QT+-+—+| ‘
Part (b): By definition, the dielectric constant is V=100 KV I@@Wﬂ““
-Q
K = C/C, = (531 pF)/(177 pF) = 3.00.
Note that this is also AFTER

K=V,/V=(300kV)/(1.00kV) = 3.00.



Dielectric Breakdown

The maximum electric field a material can withstand
without the occurrence of breakdown is called
its dielectric strength.

A FIGURE 18.30 Dielectric breakdown in the laboratory and in nature. The left-hand photo
shows a block of Plexiglas® subjected to a very strong electric field: the pattern was etched by
flowing charge.



18.9 Molecular Model of Induced Charge

In the absence of

' an electric field,
polar molecules

orient randomly.

3
ol
P

la)

‘ ~ When an
electric field is

—‘—‘—— applied, the
molecules tend

_‘ = to align with it.

A

=
-1=

(b}

A FIGURE 18.31 The effect of an electric
field on a group of polar molecules.

3 p O In the absence of
an electric field,
0 nonpolar molecules
Vi are not electric
; ' O dipoles.

(aa)

An electric field
causes the mole-
cules’ positive and
negative charges
to separate
slightly, making
the molecule
effectively polar.

(b)

A FIGURE 18.32 The effect of an electric
field on a group of nonpolar molecules.
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A FIGURE 18.33 How a dielectric reduces the electric field between capacitor plates.
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(d) Resultant field



SUMMARY

Electric Potential Energy

(Section 18.1) The work W done by the electric-field force on a
charged particle moving in a field can be represented in terms of
potential energy U: W_,, = U, — U, (Equation 18.2). For a
charge g’ that undergoes a displacement 5 parallel to a uniform
electric field, the change in potential energy 15 U, — U, = g¢'Es
(Equation 18.5). The potential energy for a point charge ¢’ moving
in the field produced by a point charge g at a distance r from g’ is

U= k%. (18.8)

Point
charge

Test charge
9 a E q'
I e
d |
P

Potential

(Section 18.2) Potential, a scalar quantity denoted by V., is potential
energy per unit charge. The potential at any point due to a point
charge is

V=—=k- (18.12)

A positive test charge tends to “fall” from a high-potential region
to a low-potential region.



Equipotential Surfaces

(Section 18.3) An equipotential surface 1s a surface on which the
potential has the same value at every point. At a point where a field
line crosses an equipotential surface, the two are perpendicular.
When all charges are at rest, the surface of a conductor 15 always

.‘l.,.--.,__ .
§ P
- I .
K
- Y

-

~

" Electric field line

r. L 1
A~ Cross section of

T

an equipotential surface, and all points 1n the interior of a conduc- P VAR N I.,kﬁh"“‘»\ equipotential surface
tor are at the same potential. " fExs /0 ™
The Millikan Oil-Drop Experiment | Atomizer
(Section 18.4) The Millikan oil-drop experiment determined the — - ————
electric charge of individual electrons by measuring the motion of ____*Droplet
electrically charged oil drops in an electric field. The size of a drop — 3
15 determined by measuring its terminal speed of fall under gravity - E

. b s d
and the drag force of air. & Telescope V‘f"_ |

e S B S et




Capacitors
(Sections 18.5 and 18.6) A capacitor consists of any pair of con-
ductors separated by vacuum or an insulating material. The capaci-
tance C is defined as C= Q/V, (Equation 18.14). A
parallel-plate capacitor is made with two parallel plates, each
with area A, separated by a distance . If they are separated by vac-
uum, the capacitance is C = €,(A[d) (Equation 18.16).

When capacitors with capacitances C,, C,, C;, ... are con-
nected in series, the equivalent capacitance C,; is given by

1 1 1 |

=Cretat (18.17)

C

aq

When they are connected in parallel, the equivalent capacitance 1s

Coy=C,+Cy+ Cy+ -+ (18.18)

Wim PIaLE: a, area A

,f

x”+ 0 /
F’nl.cnr.m] / _;_d

difference = V
; Plate b, area A
Wire

Electric Field Energy

(Section 18.7) The energy U/ required to charge a capacitor C to a
potential difference V and a charge () is equal to the energy stored
in the capacitor and 1s given by

_ W, _Q 1,
U_%“_EP_EE_?W' (18.19)

This energy can be thought of as residing in the electric field
between the conductors; the energy density u (energy per unit vol-

ume) 15 4 = EE,:,.EZ (Equation 18.20).

+_  + + + + ¥ 4
|

el




Dielectrics

(Section 18.8) When the space between the conductors 1s filled with
a dielectric matenal, the capacitance increases by a factor K called
the dielectric constant of the material. When the charges =0 on
the plates remain constant, charges induced on the surface of the
dielectric decrease the electric field and potential difference
between conductors by the same factor K. Under sufficiently
strong fields, dielectrics become conductors, a phenomenon called
dielectric breakdown. The maximum field that a material can with-
stand without breakdown is called its dielectric strength.

O + + + + + + + + + + +

0

_\ Induced

charges

Molecular Model of Induced Charge

(Section 18.9) A polar molecule has equal amounts of positive and
negative charge, but a lopsided distribution, with excess positive
charge concentrated on one side of the molecule and negative
charge on the other. When placed in an electric field, polar mole-
cules tend to partially align with the field. For a material contain-
ing polar molecules, this microscopic alignment appears as an
induced surface charge density. Even a molecule that 1s not ordi-
narily polar attains a lopsided charge distribution when it is placed
in an electric field: The field pushes the positive charges in the
molecule in the direction of the field and pushes the negative
charges in the opposite direction.




Current, Resistance, and
Direct-Current Circuits

/




19.1 Current
Charges in motion

In this chapter, we shift our emphasis to situations in which non-zero electric
fields exist inside conductors, causing motion of the mobile charges within the

conductors. A current (also called electric current) is any motion of charge from
one region of a conductor to another.

Cross-sectional area A

- Jl&)—h .‘ﬂ—p—’r —
' 'H ., — — I | E
H—)-I--I ‘

> B
| B o= |

"]




Definition of current

When a net charge AQ passes through a cross section of conductor during
time Af, the current is

_Ag

I—E-

(15.1)
Unit: 1 coulomb/second = 1 C/s = 1 ampere = 1 A.

Current is a scalar quantity. The 51 unit of current 1s the ampere



A conventional current is treated as a flow of In & metallic conductor, the moving charges are
positive charpes, regardless of whether the free ebectrons — but the current still points in the
charges in the conductor are positive, negative, direction positive charges would flow.

or bothe ;
—_—

—
Irf B J{Hﬁ _ Illr = ﬁlﬁ__

|
o> o, @l =8 _g =9/
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Conductor without internal E field

1 1 L e

\ "~ Fath of typical

S o~ .

;f / A electron with amnd
PR W

[P, ?1;; # Y without E field.

randomiv. 3

Conductor with internal E field
A FIGURE 19.3 The presence of an electrnic
field imposes a small dnft (greatly exagger-
ated here) on an electron’s random motion.

The current at any instant is the
same at all cross sections.

When you turn on a light switch,
the light comes on almost
instantaneously because the
electric fields in the conductors
travel with a speed approaching
the speed of light. You don’t have
to wait for individual electrons

to travel from the switch to the
bulb!



EXAMPLE 19.1 How many electrons?
One of the circuits in a small portable CD player operates on a
current of 2.5 mA. How many electrons enter and leave this part
of the playerin 1.0 s?

SET UP Conservation of charge tells us that when a steady cur-
rent flows, the same amount of current enters and leaves the
player per unit time.

SOLVE We use the current to find the total charge that flows in
1.0 s. We have

= —, 8O
AQ=TAt=(25x10°A)(1.0s) =25 x 1073 C.

Each electron has charge of magnitude ¢ = 1.60 x 10~" C. The
number N of electrons is the total charge AQ, divided by the
magnitude of the charge ¢ of one electron:

AQ  25x107°C

N = = —— = 1.6 X 10"°.
e 1.60 x 107" C




19.2 Resistance and Ohm’s Law

Definition of resistance

When the potential difference V between the ends of a conductor is propor-
tional to the current 7 in the conductor, the ratio V/I is called the resistance of
the conductor:

vV
R=—.
|

(19.2)

Unit: The SI unit of resistance is the ohm, equal to 1 volt per ampere. The ohm
is abbreviated with a capital Greek omega, (). Thus, 1 () = 1 V/A. The kilohm
(1kQ = 10° Q1) and the megohm (1 MQ = 10° (1) are also in common use.

Ohm’s law
The potential difference V between the ends of a conductor is proportional to the
current / through the conductor; the proportionality factor is the resistance R.



Ohm's Law

For many conductors of electricity, the electric ewrrent which will flow through
them is directly proportional to the voltage applied to them. When a
microscopic view of Ohm's law 1s taken. it 1s found to depend upon the fact that
the drift velocity of charges through the material is proportional to the electric
field in the conductor. The ratio of voltage to current is called the resistance.
and 1f the ratio 1s constant over a wide range of voltages. the material 1s said to
be an "ohmic" material. If the material can be characterized by such a
resistance, then the current can be predicted from the relationship:

UV
R

Electric current = Voltage / Resistance




Second digit  Multipher

Tolerance
First digt

A FIGURE 19.4 Commercial resistors use a

code consisting of colored bands to indicate
their resistance.



Definition of resistivity

The resistance R is proportional to the length L and inversely proportional to
the cross-sectional area A, with a proportionality factor p called the resistivity
of the material. That is,

L
R=pr, (19.3)

where p, in general different for different materials, characterizes the conduc-
tion properties of a material.
Unit: The SI unit of resistivity is 1 ohm - meter = 1 (} - m.



Resistivity Calculation

The electrical resistance of a wire would be expected to be greater for a longer wire. less for
a wire of larger cross sectional area. and would be expected to depend upon the material out
of which the wire 1s made (resistivity). Experimentally, the dependence upon these properties
1s a straightforward one for a wide range of conditions. and the resistance of a wire can be
expressed as

pL
R=—
A



TABLE 19.1 Resistivities at room temperature

Substance p(-m) Substance p(-m)

Conductors: Mercury 05 % 107®
Silver 1.47 % 107°% Nichrome alloy 100 = 107%
Copper 1.72 x 107 Insulators:
Gold 244 x 10°°® Glass 10" — 10™
Aluminum 263 % 107° Lucite = 10"
Tungsten 5.51 % 107" Quartz (fused) 75 % 10"
Steel 20 x 10°° Teflon® = 10"
Lead 22 % 107" Wood 10° — 10"




Temperature Dependence of Resistance

The resistance of every conductor varies somewhat with temperature. The resis-
tivity of a metallic conductor nearly always increases with increasing temperature
(Figure 19.5a). Over a small temperature range (up to 100 C° or so), the change
in resistivity of a metal is approximately proportional to the temperature change.
If R, is the resistance at a reference temperature 7; (often taken as 0°C or 20°C)
and Ry is the resistance at temperature T, then the variation of R with temperature
is described approximately by the equation

Rr=Ry[1 + a(T — Tp)] (19.4)

The factor « is called the temperature coefficient of resistivity. For common
metals, « typically has a value of 0.003 to 0.005 (C°)~". That is, an increase in
temperature of 1 C° increases the resistance by 0.3% to 0.5%.



p
A

Metal: Resistivity increases
with temperature.

Rr =Rl + a(T - T)].



Superconductivity

“‘?.'ﬁ]lp' O ur ’ h 4 :
e — Ly S —— Superconductor:

Below T, the
resistance drops
to zero.

A FIGURE 19.6 A maglev train in Shanghai.
Maglev (“magnetic-levitation™) trains use
superconducting electromagnets to create
magnetic fields strong enough to levitate a
train off the tracks.



The Discovery of Superconductivity

0.15
Mercury
superconducting
transition

0.10-
A zero
resistance
state!!

R((2)

0.05-

R<10™° Q

N\ [Tc =42K

"

|:| L | &) |
LAY 42 4.3
Temperature (K)

H. K. Onnes, Commun. Phys.
Lab.12.120.(1911)

4.4

H. Kamerlingh Onnes
found that the resistivity
of mercury suddenly
dropped to zero at 4.2K,
a phase transition to a
zero resistance state.
This phenomenon was
called superconductivity,
and the temperature at
which it occurred is
called its critical
temperature.



http://hyperphysics.phy-astr.gsu.edu/hbase/solids/scond.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/scond.html#c2

Ohmic resistor (e.g., typical metal wire): At a
given temperature, current 1s proportional to
voltage. ]

|

< | ~



Non-ohmic conductors

Semiconductor diode: a non-ohmic resistor

[
!

[n the direction of

positive current and

voltage, I increases

nonlinearly with V.

[n the direction of

negative current and

flows at any voltage.

= |/

This is a graph for a
semiconductor diode, a
device that is decidedly
non-ohmic. Notice that
the resistance of a diode
depends on the
direction of the current.
Diodes act like one-way
valves for current; they
are used to perform a
wide variety of logic
functions in computer
circuitry.



EXAMPLE 192 Resistance in your stereo system

Suppose you're hooking up a pair of stereo speakers. (a) You happen to have on hand some 20-m-long
pieces of 16 gauge copper wire (diameter 1.3 mm); you use them to connect the speakers to the ampli-
fier. These wires are longer than needed, but you just coil up the excess length instead of cutting them.
What is the resistance of one of these wires? (b) To improve the performance of the system, you purchase
3.0-m-long speaker cables that are made with 8 gauge copper wire (diameter 3.3 mm). What is the resist-
ance of one of these cables?

SOLUTION =

‘{ . L=J0m N
SET UP Figure 19.8 shows our sketch. The resistivity of copper | e e ! ‘
at room temperature is p = 1.72 > 107% () - m (Table 19.1). The o =
cross-sectional area A of a wire is related to its radius by d=1.3 mm
A =qr.

_ , L=3.0m

sOLVE To find the resistances, we use Equation 19.3, R = pL[A. ["( —f }:_-II

Ty \lf
1.72 X 107* Q- m) (20 m EEEAasy/lddddsddddian
Part(a): R = ( - }[j ) = 0.26 (. ( f{:/ A~
(6.5 X 107 m)? y
=3.3 mm

(172X 10°°0Q-m)(3.0m) _ AFIGURE 19.8 Our sketch for this problem.

—— 6.0 < 1073 ().
7(1.65 X 1077 m)?

Part(h): R =

Practice Problem: 14 gauge copper wire has a diameter of
REFLECT The shorter, fatter wires offer over forty times less 1.6 mm. What length of this wire has a resistance of 1.0 (1?7
resistance than the longer, skinnier ones. Answer: 120 m.



19.3 Electromotive Force and Circuits

The influence that moves charge from lower to higher
potential (despite the electric-field forces in the opposite
direction) is called electromotive force (abbreviated emf
and pronounced “ee-em-eff”).

A battery with an emf of 1.5V does 1.5 J of
work on every coulomb of charge that passes through it.

We'll use the symbol € for emf.



Va

P
Lmﬁ_

Vi

Ideal emf

Terminal at higher

)
~aif—

+
e =
"

source ﬂ / potential
|
7o
\L/4

.F'_~=qE
(=) b

Non-electrostatic

+- force tending to

move l..“l'l;ll':_Tc.‘ o

higher potential.

*... | Force due to

electric field.

Terminal at lower
potential

When the emf source 1s not part of a closed
circuit, F, = Fp and there 1s no net motion of

charge between the terminals.

e

The nature of this
additional
influence depends
on the source. In a
battery, it is due to
chemical
processes; in an
electric generator,
it results from
magnetic forces.



Potential across terminals creates electnc
field in circuit, causing charges to move.

I
Ideal emf T, ——>
PE—
source [ 3
| )
'I.f’a @ i
F,
V,=¢| E E ' i;
Fr
V,—L I_:': (=) b .

When areal m—

(as opposed 1
e —

to ideal) emf source

1s connected to a circuit, Vj; and thus Fi fall, so

that F; = Fj and F, does work on the charges.

A FIGURE 19.11 Schematic diagram of an
ideal emf source in a complete circuit.

No complete circuit

Vap =

Ideal source

VabZSIIR

Real source with internal
resistance

Vab=€—Ir



Internal Resistance in a Source of emf

Real sources of emf don’t behave exactly like the ideal sources we’ve described
because charge that moves through the material of any real source encounters
resistance. We call this the internal resistance of the source, denoted by r. If this
resistance behaves according to Ohm’s law, r is constant. The current through r
has an associated drop in potential equal to [r. The terminal potential difference

Vs 1s then

V,=&—Ir. (source with internal resistance) (19.7)



TABLE 19.2 Circuit symbols used in
this chapter

Wire with negligible =~ —————= @————— Switch (open)

resistance

Switch (closed)
R

——AAAN—— Resistor

Positive Lu[mjnal

Bulb

-
+] I'L emf source

Voltmeter (measures
potential difference
r £ between its terminals)

AAAA +|I emf source with
|

internal resistance Ammeter

{measures current)

Capacitor

Ground

)



exampLe 19.5 A dim flashlight

As a flashlight battery ages, its emf stays approximately constant, but its internal resistance increases. A
fresh battery has an emf of 1.5 V and negligible internal resistance. When the battery needs replacement, its
emf is still 1.5V, but its internal resistance has increased to 1000 (1. If this old battery is supplying 1.0 mA

to a lightbulb, what is its terminal voltage?

SET UP AND SOLVE The terminal voltage of a new battery is
1.5 V. The terminal voltage of the old, worn-out battery is given
by V, =& — Ir,s0

V,=15V — (1.0 x 1077 A)(1000 Q1) =0.5V.



It’s important to understand how the meters in the
circuit work.

The symbol V in a circle represents an ideal voltmeter.
It measures the potential difference between the two
points in the circuit where it is connected, but no
current flows through the volt-meter.

The symbol A in a circle represents an ideal ammeter.
It measures the current that flows through it, but
there is no potential difference between its terminals.

Thus, the behavior of a circuit doesn’t change when
an ideal ammeter or voltmeter is connected to it.



b

/
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r=214), £=12V



Battery or
cell

Take the
potential
to be zero
at the
negative
terminal of
the
battery.

How the potential changes in a circuit.
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A FIGURE 19.16 Potential rises and drops in the circuit.



19.4 Energy and Power in Electric Circuits

Si 1'—-AC? dV = AW
ince | == and V = %G

Then

AW = VAQ = VIAt



This work represents electrical energy transferred into the circuit element. The
time rate of energy transfer is power, denoted by P. Dividing the preceding equa-
tion by At, we obtain the time rate at which the rest of the circuit delivers electri-
cal energy to the circuit element:

AW

— =P =V, 19.9
.‘if. ab '|': }



5

-

7 Fﬁb
P=V,I=IR~= . (19.10)

R
What becomes of this energy? The moving charges collide with atoms in the
resistor and transfer some of their energy to these atoms, increasing the internal
energy of the material. Either the temperature of the resistor increases, or there is
a flow of heat out of it, or both. We say that energy is dissipated in the resistor at
a rate J°R. Too high a temperature can change the resistance unpredictably; the
resistor may melt or even explode. Of course, some devices, such as electric
heaters, are designed to get hot and transfer heat to their surroundings. But every
resistor has a power rating: the maximum power that the device can dissipate
without becoming overheated and damaged. In practical applications, the power

rating of a resistor is often just as important a characteristic as its resistance.




A Application Cheap light If yvou've had
incandescent flashlights or bicycle lights
and changed to lights that use light-emitting
diodes (LEDs), you know the large differ-
ence in energy consumption. A halogen
bicycle headlight might go through a set

of batteries in 3 hours, but an even brighter
LED headlight will last 30 hours. Why the
difference? The answer is that any incan-
descent bulb (including a halogen bulb)
works by using the dissipation of electrical
energy to heat a filament white hot. Some
of the energy is converted to visible light.
but most is lost as heat. In an LED, electri-
cal energy is used to move semiconductor
electrons to a region where they emit light.
Most of the electrical energy, then, emerges
as light; little is lost as heat.



Power Output of a Source
Using V =¢—1Ir

P=VI=c¢l—I%r



The combination rules for any number of resistors in series or parallel can be derived with
the use of Ohm's Law. the voltage law. and the current law.

R R, Ry R —=R+R+R,+..
—W—W—W— equivalent | & 3
Series
V V+V.4+V.+... V ;
Ra pverlent == I — . =_I+ Vh +_-"+---= Rl +R—. +Rg+...
! ! I I 1, I P

Series key idea: The current is the same in each resistor by the current law.

| | ] ]
=—+—+—+...
Rl R: R3 Reqmmfem Rl R’-’ R3
Parallel
V. 'V, V
Parallel: =l=1+L+L+.=—+—=+—=+..
equivalent - . RI RI R.‘i
| I | 1
+ g s

=—+
R{'qu.a'rm’r'm RI RZ R}

Parallel key idea: The voltage is the same across each resistor by the voltage law.



DC Electric Power

The electric power in watts associated with a complete electric circuit or a
circuit component represents the rate at which energy is converted from the
electrical energy of the moving charges to some other form. e.g.. heat,
mechanical energy. or energy stored in electric fields or magnetic fields. For a
resistor in a D C Circuit the power i1s given by the product of applied voltage

and the electric current:
Power = Voltage x Current

Power Dissipated in Resistor

Convenient expressions for the power dissipated in a resistor can be obtained
by the use of Ohm's Law.

2
VRP=VI—\|£ - I’R



VB VB VB
V
B o R/ Rz
0 0 0

Voltage Law:The net voltage drop around

any closed loop path must be zero.

Current law:the sum of the currents into

VB
R,
VB
VB_“O_
R,
0
0
]T IT = I1 $ 12
—
L, L,
VB
VB To R/ Rz
lT [1 ]2
-

any junction is equal to the sum of the
currents out.

VB
VB_“O'_

b,

b,

' S

Iy
R,

5
R,

L7




Magnetic Field

Magnetic fields are produced by electric currents. which can be
macroscopic currents in wires, or microscopic currents associated with
electrons in atomic orbits. The magnetic field B is defined in terms of force
on moving charge in the Lorentz force law. The interaction of magnetic
field with charge leads to many practical applications. Magnetic field
sources are essentially dipolar in nature, having a north and south magnetic
pole. The SI unit for magnetic field is the Tesla. which can be seen from the
magnetic part of the Lorentz force law Fpa0p0tic = qVB to be composed of

(Newton x second)/(Coulomb x meter). A smaller magnetic field unit is the
Gauss (1 Tesla = 10.000 Gauss).

! gt S e :
Current Loop of Solenoid Bar thnat The Earth

in wire wire
Magnetic Field Sources



Lorentz Force Law

Both the electric field and magnetic field can be defined from the Lorentz force law:
- o -
Electric Magnetic

Jorce force

The electric force 1s straigtforward, being in the direction of the electric field if the charge q
1s positive, but the direction of the magnetic part of the force is given by the right hand rule.




| North mawetic pole l

R Magnetic force of

Electric E F Electric Magnetic o magnitude qvBsin®

force gE F? Field Field B perpendicular to
............. both v and B, away

S I from viewer.




Magnetic Field Units

The standard SI unit for magnetic field 1s the Tesla. which can be seen from
the magnetic part of the Lorentz force law F2onqtic = QVB to be composed

of (Newton x second)/(Coulomb x meter). A smaller magnetic field unit is
the Gauss (1 Tesla = 10,000 Gauss).

T W N R 1 NI
dikanby . P TTLTY L)

Current Loop of gﬁmmia Elar M.a.gngt The Earth
in wire wire

Magnetic Field Sources

The magnetic quantity B which is being called "magnetic field" here 1s
sometines called "magnetic flux density". An older unit name for the Tesla
1s Webers per meter squared, with the Weber being the unit of magnetic
flux.
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Magnetic Force Between Wires

Magnetic field at wire 2 from
current in wire 1:

B - u()ll
2nr
Electric Force on a length AL of wire 2:
current
F=LALB

Force per unit length in terms
of the currents:

F - )u(lll Il
AL 2nr

7

Maﬂncm
field



Magnetic Field of Current

The magnetic field of an infinitely long straight wire can
be obtained by applying Ampere's law. Ampere's law
Electric takes the form

current

D B Al=p,l

and for a circular path centered on the wire. the
magnetic field is everywhere parallel to the path. The
summation then becomes just

Y B, Al= B2nr

7x B= Mol
2mr
Magnetic field

The constant p 1s the permeability of free space.




Torque on a Current Loop

The torque on a current-carrying coil. as i a DC motor. can be related to the
characteristics of the coil by the "magnetic moment" or "magnetic dipole
moment". The torque exerted by the magnetic force (including both sides of the
coil) 1s given by

T = BILWsin#

The coil characteristics can be grouped as
u=IA (or u=NIA for n loops)

called the magnetic moment of the loop,
and the torque written as

T = uBsinf
Lever arm =
The direction of the magnetic moment is % COos o
perpendicular to the current loop in the W
right-hand-rule direction. the direction of | = vl sin 6

the normal to the loop in the illustration.
Considering torque as a vector quantity.
this can be written as the vector product




DC Motor Operation

This 1s an active graphic. Click on bold type for further illustration.

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the
DC motor

Magnetic force

Electric

current supplied I l actsF;rLl;anicular
ally th h

externally throug to both wire and

a commutator :
magnetic field

R Nave



Current in DC Motor

This is an active graphic. Click on bold type for further illustration.

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the
DC motor

The commutator reverses
the current each half
revolution to keep the
torque turning the

coll in the same

direction.

Electric

current supplied L
externally through

a commutator

R Nave

Force in DC Motor

This is an active graphic. Click on bold type for further illustration.

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the
DC motor

F
Magnetic force
F=ILB
acts perpendicular
to both wire and
magnetic field

Magnetic Field in DC Motor

This is an active graphic. Click on bold type for further illustration.

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque

The magnetic
field is directed
from the North
pole to the South

pole.

Torque in DC Motor

This is an active graphic. Click on bold type for further illustration.

F — When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the
DC motor

The turning torque
of the motor is
proportional to the
magnetic field.

Torque = force |\ x lever arm
- (ILB)[%] sin ® x 2 sides
= |LBW sin 6 = IBA sin 6



Solenoid

A long straight coil of wire can be used to generate a nearly uniform magnetic field similar to
that of a bar magnet. Such coils, called solenoids. have an enormous number of practical
applications. The field can be greatly strengthened by the addition of an iron core. Such cores
are typical in glectromagnets.

Ampere's law :
path. The magnetic

field is
concentrated
into a nearly
uniform field
in the center
of a long
solenoid. The
field outside
is weak and
divergent.

FERMAVERAVIR VI

B= unl
| Long solenoid
approximation




Ampere's Law

The magnetic field in space around an electric current is proportional to the electric current
which serves as its source. just as the electric field in space 1s proportional to the charge
which serves as its source. Ampere's Law states that for any closed loop path. the sum of the
length elements times the magnetic field in the direction of the length element is equal to the

permeability times the electric current enclosed in the loop.

In the electric case, the relation of field to source is quantified in Gauss's Law which 1s a
very powerful tool for calculating electric fields.




Biot-Savart Law

The Biot-Savart Law relates magnetic fields to the currents which are their
sources. In a similar manner, Coulomb's law relates electric fields to the point
charges which are their sources. Finding the magnetic field resulting from a
current distribution involves the vector product. and is inherently a calculus
problem when the distance from the current to the field point is continuously

changing.

u“!dz X t

2

Magnetic field -
of a current dB —_
glement 4 ﬂ:r

where

d. = infinitesmal length of conductor
carrying electric current [

] = unit vector to specify the direction
of the the vector distance r from
the current to the field point.




Faraday's Law

Any change in the magnetic environment of a coil of wire will cause a voltage
(emf) to be "induced" in the coil. No matter how the change is produced. the
voltage will be generated. The change could be produced by changing the
magnetic field strength. moving a magnet toward or away from the coil.
moving the coil into or out of the magnetic field. rotating the coil relative to
the magnet. etc.



A(BA)

- 4Tm2!s
ing Cha
Changung
magnetic
flux

N=4

=-16 volts V —-Bvolts
en gen

Voltage  _
generated

Faraday's Law
N = 5turns

At

A= 0.002 m?

Moving
magnet
toward

coil

+ -

V =-5x0.002 mzx 04T /s
= -0.004 volts

JABA)

Faraday's Law summarizes
the ways voltage can be
generated.

Changing area
in magnetic field

ﬁ=0.2m"’!s
At o

—

N =3 turns
V =-3x02Tx0.2m%s
gen
=-0.12 volts

N=2wms _ A _ ., o,
Al
Nn S Rotating
coil in
B=02T magnetic

V =-20x02Tx02m’/s field

= -0.8 volts



(Magnetic
Coil of area A e
with N turns g field away
* * +*+ from viewer)
*7 B ® N
Induced cum E % % &

A coil of wire moving into a
magnetic field is one example
of an emf generated according
to Faraday’s Law. The current
induced will create a magnetic
field which opposes the buildup
of magnetic field in the coil.

Faraday's Law
AD
Emf=~-N Tt

T— Lenz's

Law

where N = number of turns
& = BA = magnetic flux
B = external magnetic field
A = area of coil

The minus sign denotes Lenz's Law.
Emf is the term for generated or
induced voltage.



AB B
- -

Incluced

Induced

f

Lenz's Law

Out

B AB

—_—

B -
Induced

When an emf is generated by a change in magnetic flux according to Faraday's
Law, the polarity of the induced emf 1s such that it produces a current whose
magnetic field opposes the change which produces it. The induced magnetic
field inside any loop of wire always acts to keep the magnetic flux in the loop
constant. In the examples below. if the B field is increasing. the induced field
acts in opposition to it. If it is decreasing. the induced field acts in the direction

of the applied field to try to keep it constant.

ALATTYTYH =
.IIII.




Motional EMF

The magnetic force exerted on the charges in a moving conductor will generate a voltage (a
motional emf). The generated voltage can be seen to be the work done per unit charge. This
motional emf is one of many settings in which the generated emf is described by Faraday's Law.

Emf can be seen to be the
work done per unit charge.

Consider a loop of wire moving
with velpciy v into a stationary T CE T LR T \ FL qv BL
magnetic field. et e e emf = =
7l | . +o‘ B B out « o o q 9
V' ° .o“ e o o o o o oo enlf — vBL
L - g. p,;’;‘;‘\“...‘...:.'.‘.'..:‘. ...... T A R P A TR T T L TR SN Aaa .
F * s e e o‘ e o o o
Motional 3 HG B out
¢ e W e ¥m e e !
l e”lf = VBL a -o o o.. .. 0 o'oo 0 @ E
7 ® o o o o o w.0 e i l F= q B
|< %,% %—bl e o o o o o & d()Wn

---------------------------

Note that the direction of the magnetic force is shown as the right hand rule direction on a positive
charge. and shows the direction of the conventional current in the loop.



Motional EMF and Faraday's Law

Consider a loop of wire moving

with velocity v into a stationary T s FL quL
magnetic field. s E & s o0 emf= = 7
[ o ® Bout e o o q
) NQ e o o o o o s emf:vBL
—_— : A I, SWNLAN e e
) A e e S R P C R TS S ROt
: S CHEa e B out
mduced: o e . "6‘--4_‘0 e o Vo
gurrent Bl ©o0—
-1_7_ L .._.. -.._'.. . .
e o o o o o "c-._g. B 1F=Q\B
!: W - blo e o o o o.""-., down

---------------------------

The motional emf expression is an application of Faraday's Law. as can be seen from:

emf = BLv—BLAW A(BA) A(D
special At At At

case more general
case




If the current

Inductors

Q)

Inductance 1s typified by the
behavior of a coil of wire in
resisting any change of electric
curent through the coil.

s increasing Inductance Arising from Faraday's law, the
T L inductance L may be defined in
+ [ <a— terms of the emf generated to
t :}h;;c:i:::ﬁgtechanga oppose a given change in
is created by the +—1 current:
= magnetic field
of the coil. -
| ( L Emf =—L Al
mf =—L—
Inductor Af

Unit voltsecond
forl: ampere e

Inductance of a coil of wire

Increasing current in coil




Transformer

A transformer makes use of Faraday's law and the ferromagnetic properties
of an iron core to efficiently raise or lower AC voltages. It of course cannot

increase power so that if the voltage 1s raised. the current 1s proportionally
lowered and vice versa.

Famdays O ideal transformer

Law From consenvation
vV N The vollags ratio is equal 1o Ol emeirgy Shn‘lﬁ:

5 _5‘ l‘l‘lilun‘lsmﬂﬂ_m‘rdpﬂwirln P _v I - v I _ F_ I
"u"__N equals power oul. P=Ypp™ Vglg = g

P P

Pri Seconda i
rimar
g Y V% N

v L, lg V, N

: W 3

N, Ng

IRON CORE




Transformer and Faraday's Law

also given by Faraday's
: AB
Though there is a slight Vo= "N;AZF
When a changing voitage is :;s :\zgnﬁ%?dﬁgii&:oh:t The rate of change
applied to the primary coil, totaglty eruibairat e of flux is essentially
Mbgdtem!ge_neratedby iron core, and couples the same as that in
the primary is given by Srckin tt‘wough e the primary coil - so
Faraday's law: the number of turns
AB secondary coil. iy v
V,.=Emf=-N_A 1 / TTNes (]
B P At |~ 1/
. y Result
Primary Secondary V. N
S =9
¥ L g V, N
~Nn ¥ Z VS % R

Np

A current in the primary
coil produces a magnetic
fiald, like a solenoid.

IRON CORE

The induced voltage in
the secondary coil is




