Fluid Mechanics

CHAPTER 13

Fluid Mechanics

- Density
- Pressure in a static fluid
- Pascal's law
- Absolute and gauge pressure
- Buoyancy
- Fluid flow
- Real fluids

Density

Density is mass per unit volume

$$
\rho=\frac{m}{V}
$$

Density

TABLE 13.1 Densities of Some Common Substances

Example 1

Find
a)the mass of air, and
b)the weight of air
within a fairly spacious room with dimensions of length 5.0 m , width 4.0 m and a ceiling height of 3.0 m ?

What would be the mass and weight of an equal volume of water?

Solution...

First we need the volume of the room:
Volume Room = Length * Width * Height
Volume Room $=5 \mathrm{~m}^{*} 4 \mathrm{~m}^{*} 3 \mathrm{~m}=60 \mathrm{~m}^{3}$
From data on density
Thus we have: Density = Mass / Volume

Mass $=$ Density $_{\text {Air }}$ * Volume $=1.2 \mathrm{~kg} / \mathrm{m}^{3} * 60 \mathrm{~m}^{3}=72 \mathrm{~kg}$ Weight $=$ Mass x Accel. Gravity $=72{ }^{*} 10=720 \mathrm{~N}$ For an equal Volume of water:
Mass $=$ Density $_{\text {Water }}{ }^{*}$ Volume $=1000 \mathrm{kgm}_{3} * 60=60000 \mathrm{~kg}$

$$
\text { Weight }_{\text {water }}=60000 * 10=6 \times 10^{5} \mathrm{~N}
$$

Pressure

Pressure is normal force (or perpendicular force) per unit area.

A Force parallel to a surface doesn't apply pressure to it !!

$$
P=\frac{F_{\perp}}{A}
$$

- Units of pressure:

$$
\begin{gathered}
1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=1.013 \mathrm{bar}=14.7 \mathrm{psi} \\
\text { The Standard Unit of Pressure is Pascals or } \\
\text { Newtons per metre }{ }^{2} \text {, this is what we use in } \\
\text { equations !! }
\end{gathered}
$$

Example

For the same room in the previous example, find the total force on the floor due to the air above the surface, if the air pressure is at 1.00 atm .

Floor Area from earlier = Length * Width Floor Area $=5 \mathrm{~m}^{*} 4 \mathrm{~m}=20 \mathrm{~m}^{2}$

Force $=$ Pressure * Area Force $=1.103 \times 10^{5} \mathrm{~Pa}^{*} 20 \mathrm{~m}^{2}=2.21 \times 10^{6} \mathrm{~N}$

This is about 225,000 kg of mass !! Why does the floor not collapse ?

Pressure below \approx above

Pressure in a Fluid

Fluid pressure at a point at a distance h below the surface of a static fluid is given by

$$
p=\rho g h
$$

Characteristics of Pressure in Fluids

- Pressure is perpendicular to the surface of the container and to the surface of any object immersed in it.
- Pressure acts in all directions

Characteristics of Pressure in Fluids

- Pressure is independent of shape or area of container
- Pressure depends on depth below surface

Total Pressure below a free surface

$$
p_{a b s}=p_{a t m}+\rho g h
$$

$\boldsymbol{\rho g} \boldsymbol{h}$ is sometimes known as the gauge pressure

$$
p_{a b s}=p_{a t m}+\rho g h
$$

$\rho g h$ is sometimes known as the gauge pressure

Example (U shaped Pressure)

A U-shaped tube open to the air at both ends contains some mercury. A quantity of water is carefully poured into the left arm of the U-shaped tube until the vertical height of the water column is 15.0 cm .
(a) What is the gauge pressure at the water-mercury interface?
(b) Calculate the vertical distance 15.0 cm h from the top of the mercury in the right-hand arm of the tube to the top of the water in the left-hand arm.

Gauge pressure

$$
P_{a b s}=P_{a t m}+\rho g h
$$

$$
\begin{aligned}
\text { Gauge pressure } & =e g h \\
& =1000(9.8) 0.15 \\
& =1470 \mathrm{~Pa}
\end{aligned}
$$

Since forces are balanced (Area constant) This must equal pressure of nereus

$$
\begin{aligned}
& 1470=13600 \times(9.8) \Delta h \\
& h=15-\Delta h
\end{aligned}
$$

Convert to meters

Solution...

A) We know: $\boldsymbol{P}_{\boldsymbol{a b s}}=\boldsymbol{p}_{\boldsymbol{a t m}}+\boldsymbol{\rho} \boldsymbol{g} \boldsymbol{h}$

$$
\begin{aligned}
& P_{a b s}=1.013 \times 10^{5}+(1000 * 9.8 * 0.15) \\
& P_{a b s}=1.013 \times 10^{5}+1470
\end{aligned}
$$

$$
p_{a b s}=1.0277 \times 10^{5} \mathrm{~Pa}(\text { at the } \mathrm{H} 2 \mathrm{O} / \mathrm{Hg} \text { interface) }
$$

$$
P_{g a u g e}=1470 P a
$$

B) The additional pressure from the water must equate to the additional height for the Mercury:
Additional pressure from Water $=1470 \mathrm{~Pa}$, this must equate to $\boldsymbol{p g h}$ for the mercury: $\mathbf{1 4 7 0}=\mathbf{1 3 6 0 0}{ }^{*} 9.8{ }^{*} \Delta h$

$\Delta h=1.103 \times 10^{-2}$ metres or 1.103 cm

Is this the final answer?

Solution Continued...

The $\boldsymbol{\Delta h}$ term indicates the Change in Height of the Mercury and not in fact \mathbf{h} itself...

Thus, $h=15 \mathrm{~cm}-\Delta h$
$h=15 \mathrm{~cm}-1.103 \mathrm{~cm}$
$h=13.897 \mathbf{c m}$ or 0.139 m

Why don't you try for a

Glycerin solution of height 40 cm instead of
Water... (Glycerin Density $=1.26 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Glycerin Solution...

$$
\begin{aligned}
& p_{\text {total }}=p_{\text {atm }}+\rho g h \\
& p_{\text {total }}=1.013 \times 10^{5}+(1260 * 9.8 * \mathbf{0 . 4 0}) \\
& p_{\text {total }}=1.0145 \times 10^{5} \mathbf{P a}+4939.2 \mathrm{~Pa} \\
& p_{\text {total }}=1.0639 \times 10^{5} \mathbf{P a}
\end{aligned}
$$

So,
$4939.2=13600 * 9.8 * \Delta h$
$\Delta h=0.0371 \mathrm{~m}$ or 3.71 cm
Therefore: $h=40-3.71=36.29 \mathrm{~cm}$ or 0.363 m

Pressure Gauges

(a) Open-tube manometer

Pascal's Law

Pressure applied to an enclosed incompressible fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel. The pressure depends only on depth.

The shape of the container does not make any difference!!

Hydrauliss

$$
\begin{aligned}
& P=\frac{F}{A} \Rightarrow \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \quad \text { Pascabs law } \\
& w D=F \alpha \\
& v_{0} l=\alpha_{1} A_{1}=d_{2} A_{2}
\end{aligned}
$$

An Application of Pascal's Law: Hydraulic Lift

You are designing a hydraulic lift for an automobile garage. It will consist of two oil-filled cylindrical pipes of different diameters. A worker pushes down on a piston at one end, raising the car on a platform at the other end. To handle a full range of jobs, you must be able to lift cars up to 2000 kg , plus the 500 kg platform on which they are parked. To avoid injury to your workers, the maximum amount of force a worker should need to exert is 250 N .
(a) What should be the diameter of the pipe under the platform?
(b) If the worker pushes down with a stroke 250 cm long, by how much will he raise the car at the other end?

Solution...

a) We need to apply Pascal's Law:

$$
P=\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{\mathbf{2}}}
$$

Here, we need the Area of a pipe, which is $\boldsymbol{\pi} \mathbf{r}^{2}$.
So we have:

$$
\frac{F_{1}}{\pi r_{1}^{2}}=\frac{F_{2}}{\pi r_{2}^{2}}
$$

Re-arrange this for r_{2} : as we are looking for the second radius:

$$
r_{2}=\sqrt{\frac{F_{2} \pi r_{1}^{2}}{\pi F_{1}}}
$$

Solution cont...

Now we can put numbers in, but remember, we are dealing with Forces and not Masses...

$$
\mathrm{F}_{1}=250 \mathrm{~N} \text { and } \mathrm{F}_{2}=(2500 \times 10)=25000 \mathrm{~N}
$$

$$
r_{2}=\sqrt{\frac{25000 * \pi * 0.1^{2}}{\pi * 250}}=1 \text { metre }
$$

Now we have to calculate b) How far does the car move for a piston stroke of 2.50 metres....

There are in fact 2 ways to do this.

Solution continued...

$1^{\text {st }}$ Method: Volume of fluid must be constant, thus:

$$
\begin{gathered}
\text { Volume of fluid moved }=d_{1} A_{1}=d_{2} A_{2} \\
d_{2}=\frac{d_{1} A_{1}}{A_{2}}=\frac{d_{1} \pi r_{1}{ }^{2}}{\pi r_{2}{ }^{2}}=\frac{2.5 * \pi * 0.1^{2}}{\pi * 1^{2}}=2.5 * 10^{-2} m
\end{gathered}
$$

$2^{\text {nd }}$ Method: Word Done on both sides must be equal:

$$
\begin{gathered}
\text { Work Done }=F_{1} d_{1}=F_{2} d_{2} \\
d_{2}=\frac{F_{1} d_{1}}{F_{2}}=\frac{250 * 2.5}{25000}=\frac{500}{25000}=2.5 * 10^{-2} \mathrm{~m}
\end{gathered}
$$

So Both Results are the Same - Which is Expected !!

Pressure applied to an enclosed incompressible fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel.

Buoyancy: Archimedes's Principle

- When an object is completely or partially immersed in a fluid, the fluid exerts an upward force on the object equal to the weight of the fluid that is displaced by the object.

Archimedes Principle

The buoyant force equals the weight of the displaced fluid.

Archimedes's Principle: Buoyancy

Fluid element replaced with solid object of the same size and shape.

The forces due to pressure are the same, so the object must be acted upon by the same buoyancy force as the fluid element, regardless of the object's weight.

Arbitrary element of fluid in equilibrium

The forces on the fluid element due to pressure must sum to a buoyancy force equal in magnitude to the element's weight.

Archimedes's Principle: Buoyancy

Example

- A 15.0 kg solid-gold statue is being raised from a sunken treasure ship.
(a) Find the tension in the hoisting cable when the statue is completely immersed.
(b) Find the tension when the statue is completely out of the water.
The density of gold is $19.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

When an object is completely or partially immersed in a fluid, the fluid exerts an upward force on the object equal to the weight of the fluid that is displaced by the object.

$$
\begin{aligned}
P & =\frac{m}{V} \frac{o f G 01 \alpha}{} \\
V & =\frac{m}{e} \\
& =\frac{15}{19.3 \times 10^{3}} \\
& =7.8 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

mass of water displuced

$$
\begin{aligned}
m & =e \mathrm{~V} \\
& =1.00 \times 10^{3}\left(7.8 \times 10^{-4}\right) \\
& =0.78 \mathrm{ky}
\end{aligned}
$$

$$
w=m g
$$

$$
=0.78(9.8)=7.6 \mathrm{~N}
$$

$$
=0.78(1.0)-10.10
$$

(a)
moving at constat velouts

$$
\begin{align*}
& T+W_{\substack{\text { crime } \\
\text { spladd }}}=W_{\text {gold }} \tag{b}\\
& T
\end{aligned} \begin{aligned}
& =W_{\text {godd }}-W_{\text {water }}^{\text {duppladd }} \\
& =147-7.6 \\
& =139.4 \mathrm{~N}
\end{align*}
$$

$$
\begin{aligned}
T & =W_{g_{0} 12} \\
& =147 \mathrm{~N}
\end{aligned}
$$

Fluid Flow

- An ideal fluid is incompressible and has no internal friction or viscosity.
- Most liquids are almost incompressible.
- Laminar

Turbulent

Laminar Flow

- Adjacent layers of fluid slide past each other smoothly
- There is a clear flow pattern
- Steady flow is when the pattern doesn't change with time

(a)

(b)

(c)

Turbulent Flow

- Sudden changes in the velocities of the particles
- Irregular flow
- No steady-state pattern

- http://www.youtube.com/watch?v=WG-YCpAGgQQ

Density, Pressure and Fluids

$$
\begin{array}{lr}
p=\frac{m}{V} & P=\frac{F}{A} \\
P=P_{\text {atm }}+p g h &
\end{array}
$$

Extra questions (if time)

A 10.0 kg Aluminum statue is being raised from a sunken treasure ship.
(a) Find the tension in the hoisting cable when the statue is completely immersed.
(b) Find the tension when the statue is completely out of the water.
The density of Aluminum is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
The density of water is
$1000 \mathrm{~kg} / \mathrm{m}^{3}$

A hydraulic lift consists of two oil-filled cylindrical pipes of different diameters. A worker pushes down on a piston of diameter 0.1 m at one end, raising the car on a platform at the other e@t must be able to lift cars up to 3000 kg us the 500 kg platform on whichoh ${ }^{\text {a }}$ ye parked. The maximum amoun crorce a worker should need to 200 N .
(a) What siavald be the diameter of ne under the platform?
(b) If the worker pushes down with a stroke 300 cm long, by how much will he raise the car at the other end?

