’ Magnetic Field and

Magnetic Forces

In industnal settings,
electromagnets are
often used to pick up
and move iron-containing

natenal, such as this
shredded scrap. How
can electric currents
cause magnetic forces?
We'll learn in this

chapter.



A FIGURE 20.1 This bar magnet picks up
steel filings—but not the copper filings in
the pile. Later in this chapter, we’ll learn why
some metals are strongly magnetic and others

arc not.



Unlike poles attract.
F F

Like poles repel.

Differing from electric charges, magnetic poles
always come paired and can’t be 1solated.

_- ‘ Cutting a magnet in two . . .
|E NI
F F

A FIGURE 20.2 Unlike magnetic poles
attract each other; like magnetic poles repel IWI

each other.
l . . . however small you cut.
|S NI |S NI |S NI 5 NI

A FIGURE 20.3 Magnets always have paired
N and S poles.

S NI




North geographic pole \‘\ ; The geomagnetic north pole is actually
{earth’s rotation axis a magnetic south (S) pole—it attracts
the N pole of a compass.

Compass

Magnetic field lines show
the direction a compass
would point at a given
. location.

- The earth’s magnetic

| field has a shape

| similar to that pro-

?J duced by a simple

bar magnet (although

actually it 1s caused by

electric currents in the

core).

The earth’s magnetic axis is
offset from its geographic axis.

The geomagnetic
south pole is actually a
magnetic north (N) pole.

South geographic pole

A FIGURE 20.4 A compass placed at any point in the earth’s magnetic field will point in the
direction of the field line at that point. Representing the earth’s field as that of a tilted bar
magnet is only a crude approximation of its fairly complex configuration.
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When the wire carres a current, the compass
needle deflects. The direction of deflection

depends on the direction of the current.

A FIGURE 20.5 The behavior of a compass
placed directly over a wire (seen from
above). If the compass were placed directly
under the wire, the deflection of the needle
would be reversed.

1) 13
/ COMPAss Necale

In 1819, the Danish
scientist Hans Christian
Oersted, observed that a
compass needle was
deflected by a current-

carrying wire.

A few years later, it was
found that moving a magnet
near a conducting loop can
cause a current in the loop
and that a changing current
in one conducting loop can
cause a current in a separate
loop.



At each point, the The more densely

field line is tangent the field lines are
to the magnetic packed, the stronger
field vector B. the field is at that point.
7 ‘
H.."L__\_\__\- - _
e
Wl '
At each point, the . . . therefore, magnetic
field lines point in field lines point away
the same direction a from N poles and
compass would . . . toward S poles.

A FIGURE 20.6 Magnetic field lines in a
plane through the center of a permanent
magnet.

The N pole of the
compass needle always
tends to point in the
direction of the

magnetic filed B

Because the direction of
B at each point s

unique, field lines never
intersect.



Magnetic Field

Magnetic fields are produced by electric currents. which can be
macroscopic currents in wires, or microscopic currents associated with
electrons in atomic orbits. The magnetic field B 1s defined in terms of force
on moving charge in the Lorentz force law. The interaction of magnetic
field with charge leads to many practical applications. Magnetic field
sources are essentially dipolar in nature, having a north and south magnetic
pole. The ST unit for magnetic field is the Tesla. which can be seen from the
magnetic part of the Lorentz force law Faonetic = qvB to be composed of

(Newton x second)/(Coulomb x meter). A smaller magnetic field unit is the
Gauss (1 Tesla = 10,000 Gauss).

!

.!i'illlll‘ . ' J :Hul: .
Current Loop of Solenoid Bar Mﬁgnet The Earth

in wire wire
Magnetic Field Sources



20.2 Magnetic Field and Magnetic Force

To introduce the concept of a magnetic field, let’s review our formulation of
electrical interactions in Chapter 17, where we introduced the concept of an
electric field. We represented electrical interactions in two steps:

1. A distribution of electric charge at rest creates an electric field E at all points
in the surrounding space.

2. The electric field exerts a force F = qE' on any other charge ¢ that is present
in the field.

We can describe magnetic interactions in the same way:

1. A permanent magnet, a moving charge, or a current creates a magnetic field
at all points in the surrounding space.

2. The magnetic field exerts a force F on any other moving charge or current that
is present in the field.



Between flat, parallel magnetic poles,

. : . To represent a field coming out of or
the magnetic field is nearly uniform. p £

going into the plane of the paper, we

]

i | ™ e use dots and crosses, respectively.
'/“/-rf_'_q\\\ ' IF ﬁ \ ME di'rech:d Dl].t of ;-Iane
\ /| _};v: X X X
: -_é«"/ \— /,"I “B dl::{rcctg{d m)t{u pl;ne
~L_ — Perspective view Wire in plane of paper

(b) Magnetic field of a straight current-carrying wire

Notice that the field of the

loop and. especially, that of
the coil look like the field -
of a bar magnet (Figure 20.6). ff/

(¢) Magnetic fields of a current-carrying loop and a current-carrying coil (solenoid)

A FIGURE 20.7 Some examples of magnetic fields.
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A FIGURE 20.8 Magnetic field lines made visible by iron filings, which line up tangent to the field lines like little compass
needles.



Magnetic Force

A charge moving parallel to a magnetic field
EXPETIENCES ZETO

magnetic _ 9 = y
force. —_—o—)"
q =B
.
U

— A charge moving perpendicular to a magnetic
field experiences a maximal magnetic force
with magnitude
Foa = quB.

Y

A charge moving at an angle ¢ to a magnetic
field experiences a magnetic force with
magnitude F' = |g|v, B = |g|vB sin ¢.

ol

F is perpendic-
ular to the plane \
containing

v and B. UJ_/

¥

| ;



Magnitude of the magnetic force
When a charged particle moves with velocity © in a magnetic field B, the
magnitude F of the force exerted on it is

= |gq|lv.B = |gq|vBsing, (20.1)

where |g| is the magmtude of the charge and ¢ is the angle measured from
the direction of ¥ to the direction of B‘



The direction of the magnetic force

Right-hand rule for the direction of magnetic force on a positive charge moving in a magnetic field:

(1) Place the v and B vectors tail to tail.

=

(Z) Imagine turning © toward B in the v-B
plane (through the smaller angle).

|
|
|
(3 The force acts _fllEJ]g a line perpen- / L
dicular to the v-B plane. Curl the B
fingers of your right hand around
this line in the same direction you
rotated U. Your thumb now points
in the direction the force acts.

Right
and!

€

Right hand > curl fingers from v to B > Thumb is Force direction



If the charge is negative, the direction
of the force is opposite to that given by
the right—har]d rule.
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An equivalent rule is Fleming's left-hand rule.

This also gives you the direction of the force that acts on a
current if you know the magnetic field.

The current, I, is the velocity of a positive particle.




Equation 20.1 can be interpreted in a different but equivalent way. Because ¢
is the angle betwe:en the directions of vectors T and B, we may interpret Bsind as
the component of B perpendicular to v—that is, B, . With this notation, the force
expression (Equation 20.1) becomes

F = |q|vB,. (20.2)

This form is equivalent to Equation 20.1, but it’s sometimes more convenient to
use, especially in problems involving currents rather than individual particles.



-4 BIO Application Spin doctor? The incredible detail shown in this false-color magnetic
resonance image (MRI) of the foot comes from an analysis of the behavior of spinning
hydrogen nuclei in a magnetic field. The patient is placed in a strong magnetic field of about
1.5 T, over 10,000 times stronger than the earth’s. Each spinning hydrogen nucleus in the
imaged tissue acts like a tiny electromagnet, aligning itself either with or against the mag-
netic field. A pulse of electromagnetic energy of about 50 MHz causes these tiny spinning
magnets to flip their orientation. As the nucleii flip back following the pulse, they produce

a signal that is proportional to the amount of hydrogen in any imaged tissue. Therefore,
hydrogen-rich fatty tissue looks quite different from hydrogen-deficient bone, making MRI
imaging ideal for analyzing soft-tissue details that are invisible in X-ray analysis.



Definition of the tesla
ltesla=1T=1N/(A-m).

The cgs unit of B, the gauss (1 G = 10" T), is also in common use. Instru-
ments for measuring magnetic field are sometimes called gaussmeters or tes-
lameters.



Direction of magnetic force

Which of the three paths, 1, 2, or 3, does the elec-
tron in Figure 20.12 follow? (Remember that the blue *’s repre-
sent a magnetic field pointing into the page, as explained in
Figure 20.7b.)

A. Path 1.
B. Path 2, because the force on it is zero.
C. Path 2, because the force on it is perpendicular to the page.

(We see the path projected onto the plane of the paper.)
D. Path 3.

SOLUTION The path depends on the direction of the force (if
any) exerted by the magnetic field on the electron. The electron’s
velocity is not parallel to B. so the electron experiences a force.
To determine the force’s direction, we use the right-hand rule.
First, we identify the planc containing % and B. (It is perpendicu-
lar to the page.) To turn ¥ toward B, we rotate it away from us
into the page. Next, we hold our right hand so that the fingers
can wrap around a line perpendicular to the plane of ¥ and B.
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A FIGURE 20.12
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oM x % hpath:*r

(This line is in the plane of the paper, parallel to the side of the
page.) When we curl our fingers in the direction we turned ¥, our
thumb points toward the top margin of the page. But that is the
direction of the force the magnetic field would exert on a positive
charge. Since the electron is negative, the force exerted on it is in
the plane of the paper, directed toward the bottom of the page.
Thus, the electron follows path 3.



EXAMPLE 20.1 A proton beam

In Figure 20.13, a beam of protons moves through a uniform magnetic field with magnitude

2.0 T, directed along the positive z axis. The protons have a velocity of magnitude q
3.0 % 10° m/s in the x-z plane at an angle of 30° to the positive z axis. Find the force on a pro-

ton. The charge of the protonis g = +1.6 x 107" C.

» FIGURE 20.13

tu“\

SOLUTION

SET UP We use the right-hand rule to find the direction of the
force. The force acts along the y axis, so we curl the fingers of
our right hand around this axis in the direction from v toward B.
We find that the force acts in the —y direction.

SOLVE To find the magnitude of the force, we use Equation 20.1:

F = guBsind
= (1.6 x 107" C) (3.0 x 10° m/s) (2.0 T) (sin30°)
=48 x 100N,

REFLECT We could also obtain this result by finding B, and
applying Equation 20.2: F = |g|vB,. However, since we were
given the angle ¢, Equation 20.1 is more convenient. To check
for consistency of units, we recall that 1 T = IN/(A -m).

Practice Problem: An electron beam moves through a uniform
magnetic field with magnitude 3.8 T, directed in the —z direction.
The electrons have a velocity of 2.4 * 10* m/s in the y-z plane
at an angle of 40° from the —z axis toward the +y axis. Find
the force on an electron. Answer: F = 9.4 % 107" N in the +x
direction.



Lorentz Force Law

Both the electric field and magnetic field can be defined from the Lorentz force law:
— — - —
Electric Magnetic
force force

The electric force 1s straigtforward. being in the direction of the electric field if the charge q
1s positive, but the direction of the magnetic part of the force 1s given by the right hand rule.

| North magnetic pole
N
L o i i e o e S O Magnetic force of
Elecric . lectric tic Y 7 2nitude qvBsin®
. F Electric Magnetic magnitude qvBsin
Jorce gE ~ F Field Field B perpendicular to
............. both v and B, away
I S | from viewer.

An example of the use of this is the velocity selector




/glﬂ.ﬂume of charged particles The VE'OCity SE'ECtOr
q uses an arrangement

x| ¥ &< | = By the nght-hand rule, Of E|eCtriC and
=Y the force of the B field

| ==T—+*|| X on the charge points to magnetic fleldS that
| e rig
| | B e e lets us select only
|

|..£=_+ The force of the E field particles with the

< 1 A ||* onthe charge points to

Tl thetert desired speed.

For a negative charge.
! i—l—x*“ * - -

I the directions of both

| fe——+ FOrCes are revers Only 1f a charged
orces are reversed. . e~
E S B B O Fg=qE Fp=quB particle has v = E/B
\-\-\-\-\_'_‘—\_I_I—'_'_Fr;’

do the electric and magnetic
forces cancel. All other
particles are deflected.

- - -

(a) Schematic diagram of velocity selector
(b) Free-body diagram for a positive particle



Thomson’s e/m Experiment

In one of the landmark experiments in physics at the turn of the 20th
century, Sir J. J. Thomson measured the ratio of charge to mass for the
electron.

The most significant aspect of Thomson’s measurements was that he
found that all particles in the beam had the same value for this
guantity and that the value was independent of the materials used for
the experiment.

This independence showed that the particles in the beam, then
known as cathode rays, which we now call electrons, are a common
constituent of all matter.

Thus, Thomson is credited with the first discovery of a subatomic
particle, the electron.



20.3 Motion of
Charged Particles
in a Magnetic Field

The force is always
perpendicular

to so it cannot change
the magnitude of the
velocity, only its
direction.

A charge moving at right angles to a uniform B
field moves in a circle at constant speed
because F and v are always perpendicular to
each other.

(a) The orbit of a charged particle in a uniform
magnetic field



The radial acceleration is v*/R, and, from Newton’s second law,

Ul

F=lglvB=m—
q|v m—,

where m 1s the mass of the particle. The radius R of the circular path 1s

R = : (20.4)
lq|B
This result agrees with our intuition that it’s more difficult to bend the paths of fast
and heavy particles into a circle, so the radius 1s larger for fast, massive particles
than for slower, less massive particles. Likewise, for a given charge, a larger mag-
netic field increases the force and pulls the particle into a smaller radius. If the
charge g is negative, the particle moves clockwise around the orbit in Figure 20.16a.
The angular velocity w of the particle is given by Equation 9.13: w = v/R.
Combining this relationship with Equation 20.4, we get
v B B
== plaB _ldB (20.5)

mu m




The accelerating electric
field reverses just at the
time the electrons finish
their half circle, so that

it accelerates them
across the gap. With

a higher speed, they
move in a larger

+

Cyclotron

Top View

semicircle. After
repeating this process
several times, they
come out the exit port
at a high speed.

Injection of
electrons

Output beamn of high
velocity electrons.
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Helical
Motion

This particle’s motion has components both
parallel (v ) and perpendicular (v | ) to the
magnetic field, so it moves in a spiral.

A FIGURE 20.17 The spiral path of a
charged particle whose 1nitial velocity has
components parallel and perpendicular to the

magnetic field.
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are "excited"

molecules give off light
as they calm down

magnetosphere



EXAMPLE 20.2

Electron motion in a microwave oven

A magnetron in a microwave oven emits microwaves with frequency f = 2450 MHz. What magnetic field
strength would be required for electrons to move in circular paths with this frequency?

SOLUTION

SET UP Figure 20.19 shows our diagram. Because the elec-
tron is negatively charged, the right-hand rule tells us that it
circles clockwise. The frequency is f= 2450 MHz = 2.45
10°s™'. The corresponding angular velocity is @ = 27f =
(27)(2.45 x 10°s7') = 1.54 % 10" rad/s.

soLVE From Equation 20.5,
mew (911 X 1073 kg) (1.54 x 10" rad/s)
lq] 1.60 x 1077 C

REFLECT This is a moderate field strength, easily produced with
a permanent magnet. Electromagnetic waves with this frequency
can penetrate several centimeters into food with high water
content.

B

Practice Problem: If the magnetron emits microwaves with fre-
quency 2300 MHz, what magnetic field strength would be required

= 0.0877T.

—

v B
X X
X QO X
X X

X X P Pt X
A FIGURE 20.19 Our sketch for this problem.

for electrons to move in circular paths with that frequency?
Answer: B = 0.0823 T.



20.4 Mass
SpeCt rometers Velocity selector

selects particles
with speed v.

Photographic
plate

]

m| ' &
Magnetic fualcl separ th!-. ptuncle.h. by mass;

the greater a particle’s mass, the greater is
the radius of its path.



20.5 Magnetic Force on a o | -
Force on a straight wire carrying a positive

Current'carrying Conductor current and oriented at an angle ¢ to a
magnetic field B:

Magnitude is F = I'lB, = Il Bsin ¢

* * > x * *
1 ‘ Direction is given by the right-hand rule.
x x X "FTH‘ * * .
—=

Drift velocity of
Ao A
charge carriers

A w| Ix =

F
X oo® X

W o x| om o om| |x  x
KEKHKK
_:|.
ITH
¥ o0x x =l O x = x

A FIGURE 20.22 Magnetic force on a repre-
sentative moving positive charge in a current-
carrying conductor.

A FIGURE 20.23 The magnetic force on a
segment of current-carrying wire in a mag-
netic field.



Magnetic force on a current-carrying conductor
The magnetic-field force on a segment of conductor with length [, carrying a
current [ in a uniform magnetic field B, is

F=1IB, = lIBsing. (20.7)

The force 1s always perpendicular to both the conductor and the field, with
the direction determined by the same right-hand rule that we used for a mov-
ing positive charge (Figure 20.23).

Figure 20.24 shows the relations among the various directions for several
cases.



Reversing the current (relative to figure b)
y reverses the force y

Reversin ﬁreverses : )
& direction.

the force direction.

(a) (b) (c)

A FIGURE 20.24 The relation of the direction of the magnetic force on a current-carrying conductor to the directions of the current and
the magnetic field.



20.6 Force and Torque on a Current Loop

The two pairs of forces acting on the loop cancel, so no net force acts on the loop.

——

However, the forces on the a sides of the loop (F and —F) produce a torque B& . [.:11: tu;quf:‘;(‘;a'“";::'l_'_".“l

T = (laB)( b sin¢) on the loop. i’ m—— F ;’ M]] f.th 'lf b
it gl ne plane of the loop.)
=== " P

y v I'§ { o \| % (direction normal to loop)

¢ is the angle N\ P ' ] —

between a line _//%{

normal to the loop ...\ - l B T

. . maenetic TN x I

¢1_nd the magnetic o - e~

field. F I b

(b)

7 (direction normal

)L to loop) The torque is zero when
i . & = 0° {as shown here) or
/ V- F B B . ¢ = 180°. In both cases.
- "‘-.__E — _':-----____ F _x Bis perpendicular to the
fh_-_:" — I 'E---.... ) plane of the loop.

— =7 Il -\"N,L The loop is in stable equi-

| librium when & = 0; it is

\/ in unstable equilibrium

{a) (c) when ¢ = 180°.

A FIGURE 20.27 (a) Forces on the sides of a current-carrying loop rotating in a magnetic field. (b), (¢) orientations at which the torque on the
loop is maximal and zero, respectively.

Use right hand curl rule for direction of force. | is direction of +ve charge flow.



Torque on a current-carrying loop
When a conducting loop with area A carries a current / in a uniform magnetic
field of magnitude B, the torque exerted on the loop by the field 1s

7 = IABsind, (20.8)

where ¢ 1s the angle between the normal to the loop and B.

The torque 7 tends to rotate the loop in the direction of decreasing —
that 1s, toward its stable equilibrium position, in which ¢¢ = 0 and the loop
lies 1n the x-y plane, perpendicular to the direction of the field B (Fig-
ure 20.27¢). The product /A is called the magnetic moment of the loop,
denoted by u:

= IA. (20.9)



A planar current loop
—3 Of any shape can be
= approximated by a
A A h set of rectangular
. M \:: '
=1 iy, loops.
e
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A FIGURE 20.28 An arbitrary planar shape
can be approximated to any desired accuracy
by a collection of rectangles. The narrower
and more numerous the rectangles, the more

closely they approximate the shape.



The torque tends to make the solenoid rotate
clockwise in the plane of the page.

A FIGURE 20.29 A current-carrying sole-

noid in a uniform magnetic field experiences
a torque.

For a solenoid with N turns in a uniform field with m_agnil:ucle B,
T = NIABsind,

where & 1s the angle between the axis of the solenoid and the direction of the
field.



Torque on a Current Loop

The torque on a current-carrying coil, as in a DC motor, can be related to the
characteristics of the coil by the "magnetic moment" or "magnetic dipole

moment". The torque exerted by the magnetic force (including both sides of the
coil) 1s given by

T = BILWsin@
The coil characteristics can be grouped as
u=1I1A (or u=NIA for n loops)

called the magnetic moment of the loop.
and the torque written as

T = uBsing@
Lever am =
The direction of the magnetic moment 1s % cos o
perpendicular to the current loop in the W
right-hand-rule direction. the direction of | = vl sin 6

the normal to the loop in the illustration.
Considering torque as a vector quantity.
this can be written as the vector product




EXAMPLE 20.5 Torque on a circular coil

A circular coil of wire with average radius 0.0500 m and 30 turns lies in a horizontal plane. It carries a cur-
rent of 5.00 A in a counterclockwise sense when viewed from above. The coil is in a uniform magnetic field
directed toward the right, with magnitude 1.20 T. Find the magnetic moment and the torque on the coil.

Which way does the coil tend to rotate?

SOLUTION

seT UP Figure 20.31 shows our diagram. The area of the coil is
A = qr? = 7(0.0500 m)* = 7.85 ¥ 107" m* the angle ¢ be-
tween the direction of B and the axis of the coil (perpendicular to
its plane) is 90°.

soLVE The magnetic moment for one turn of the coil is y = JA

(Equation 20.9). Therefore, the total magnetic moment for all 30
turns is

= 30p = 30IA = 30(5.00 A) (7.85 x 107> m?)
= .18 A - m”

Hiotal

From Equation 20.8, the torque on each turn of the coil is

T = IABsind = (5.00 A)(7.85 % 102 m?)(1.20 T) (sin90°)
= 0.0471 N - m,

and the total torque on the coil of 30 turns is

7=(30)(0.0471N-m) = 141 N-m.

I=5.004
A FIGURE 20.31 Our sketch for this problem.

Using the right-hand rule on the two sides of the coil, we find that
the torque tends to rotate the right side down and the left side up.

REFLECT The torque tends to rotate the coil toward the stable
equililg}rium orientation, in which the normal to the plane is paral-
lel to B.

Practice Problem: Calculate the torque on the coil when it is
placed in a magnetic field along the direction of the axis of the
coil. Answer: 7 = ON -m.



The Direct-Current Motor

Conductors

A FIGURE 20.32 Schematic diagram of a dc motor. The rotor rotates on a
shaft through its center, perpendicular to the plane of the figure.



Electrical contact for coil 5 Planes of coils
(the coil has two contacts, on rotor
numbered 5 and 5') ‘

CurrenL

out of page

Brush

—— Current
into page

| > ||

II
The brushes transmit current through contacts 1

and 1" to coil 1, which is oriented to receive
maximal torque from the magnetic field.

Rotor motion

Left brush now Right brush now
mu-_:hes contact 1'.  touches contact 1.

When the brushes are between contacts,

inertia keeps the rotor turning.

The brushes again contact coil 1, but
with opposite polarity, so the torque
on the coil is still counterclockwise.

A FIGURE 20.33 By reversing the direction of the current in each coil once per half cycle, the commutator ensures that the torque on the coils

always points in the same direction.



DC Motor Operation

This 1s an active graphic. Click on bold type for further illustration.
When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the
DC motor

Magnetic force

Electric

current supplied I F=ILB :
externally through acts perpendicular
a commutator to both wire and

magnetic field
R Nave



Current in DC Motor

This is an active graphic. Click on bold type for further illustration.

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the
DC motor

The commutator reverses
the current each half
revolution to keep the
torque turning the

coil in the same

direction.

Electric \
current supplied L |
externally through ¥’
a commutator

R Neve

Force in DC Motor

This is an active graphic. Click on bold type for further illustration.

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the

F=ILB
acts perpendicular
to both wire and
magnetic field

Magnetic Field in DC Motor

This is an active graphic. Click on bold type for further illustration.

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque

The magnetic
field is directed
from the North
pole to the South

pole.

Torque in DC Motor

The turning torque
of the motor is
proportional to the
magnetic field.

This is an active graphic. Click on bold type for further illustration.

F=

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
which turns the
DC motor

Torque = force |\ x lever arm

- (u.B)[g] sin© x 2 sides

= ILBW sin 6 = IBA sin 6



» Application A clever solution. As you know, a current traveling through a wire generates
a magnetic field surrounding the wire. In a normal household extension cord, the two wires
run side by side, and their fields add to produce a small net magnetic field. Because many
types of sensitive electronic equipment cannot tolerate even these slight magnetic fields, the
coaxial cable was developed. In a coaxial cable, one of the conductors has the form of a hol-
low tube, and the other runs through its center. (The cable is called “coaxial™ because the
conductors have the same axis.) As long as the currents in the two conductors are equal,

the two magnetic fields cancel, so the cable produces no net magnetic field.



20.7 Magnetic Field of a Long, Straight Conductor

Right-hand rule for the magnetic field
around a current-carrying wire: Point the
thumb of your right hand in the direction of the
current. Your fingers now curl around the wire
in the direction of the magnetic field lines.

A FIGURE 20.34 Right-hand rule for the
direction of the magnetic field around a long,

straight conductor carrying a current.






Magnetic field of a long, straight wire
The magnetic field B produced by a long, straight conductor carrying a current
I, at a distance r from the axis of the conductor, has magnitude B given by

_ Mol

B = :
27r

(20.10)

In this equation, i, 1s a constant called the permeability of vacuum. Its
numerical value depends on the system of units we use. In SI units, the units
of pyare (T - m/A ). Its numerical value, which is related to the definition of
the unit of current, is defined to be exactly 47 % 107"

(o = 47 x 107 T-m/A.

A useful relationship for checks of unit consistency is 1 T- m/A = 1 N/AZ
We invite you to verify this equivalence.



exampLe 20.6 IMagnetic field from power lines

A long, straight dc power line carries a current of 100 A. A swarm of bees builds a hive next to it. It is
hypothesized that bees use the earth’s magnetic field as a reference direction when orienting their honey-
combs. At what distance from the power line is the magnitude of the magnetic field from the current equal

to the magnitude of Earth’s magnetic field, about 5.0 % 107> T?

SOLUTION

SET UP AND sOLVE We need to find the distance r at which the
magnitude of the field B, from the current in the power line
equals the magnitude of field B.,, from the earth. Setting

Bower = Beann and using Equation 20.10 for B ., we find that
pol
— = B
2qr o™

We solve this equation for the distance r from the power line:

el (4mx107T-m[A)(100A)
2B 27(5.0 X 10°T) a

0.40 m

REFLECT The magnetic field of the power line at a distance of
half a meter is comparable in magnitude to the earth’s field.
Depending on the orientation of the power line relative to the
earth’s field, the current could cause a significant disruption in
the bees” perception of direction.

Practice Problem: At what distance from a power line carrying
a current of 110 A would it create a magnetic field with the same
magnitude as the earth’s? Answer: r = 0.44 m.



20.8 Force between Parallel Conductors

The magnetic field of the lower wire exerts an
attractive force on the upper wire. By the same
token, the upper wire attracts the lower one.

If the wires had currents in opposite directions,
they would repel each other.




From Equation. 20.10, the magnitude of the B vector at points on the upper
conductor is

Mol

B = .
27r

From Equation 20.6, the force on a length [ of the upper conductor is

I ur
F=1IBl= ;(""*—”) _ o

27r 27r

and the force per unit length, F|l, is

F I
LA (20.11)
/ 2Tr




Magnetic Force Between Wires

Magnetic field at wire 2 from
current in wire 1:

B - l‘l()ll
2nr
Electric Force on a length AL of wire 2:
current
F=LALB

Force per unit length in terms
of the currents:

F =aUnI|I:
AL 2nr

7

Mauncm
field



Definition of the ampere
The forces that two straight, parallel conductors exert on one another form the
basis for the official SI definition of the ampere, as follows:

One ampere is that unvarying current which, if present in each of two
parallel conductors of infinite length and 1 meter apart in empty space, causes
a force of exactly 2 X 1077 newtons per meter of length on each conductor.

This definition is consistent with the definition of the constant i, as
exactly 47 X 1077 N/A2, as we stated in Section 20.7.



20.9 Current Loops and Solenoids

A FIGURE 20.38 Magnetic field of a circular
loop.

A FIGURE 20.39 Magnetic field lines
induced by the current in a circular loop. At
points on the axis, the E field has the same
direction as the magnetic moment of the loop.



Magnetic field at center of circular loop

_ Mol

B =
2R

(center of circular loop). (20.12)

If we have a coil of N loops instead of a single loop, and if the loops are
closely spaced and all have the same radius, then each loop contributes
equally to the field, and the field at the center is just N times Equation 20.12:

_ oM

B
2R

(center of N circular loops). (20.13)



exampLE 20.8 A current loop for an electron beam experiment

A coil used to produce a magnetic field for an electron beam experiment has 200 turns and a radius of
12 cm. (a) What current is needed to produce a magnetic field with a magnitude of 5.0 > 107 T at
the center of the coil? (b) Figure 20.40 shows an electron being deflected as it moves through the I '

coil. What is the direction of current in the coil?

&

/
."f

» FIGURE 20.40  Batcenter = 5.0 ¥ 107 ° T

SOLUTION

SET UP AND soLVE To find the needed current, solve Equa-
tion 20.13 for I:

= 2KRB 2(0.12m) (5.0 x 10‘3T} o
woN (47 % ID‘?T-m}'A}(ZDU) o
From the right-hand rule, with the velocity vector of the electron
pointing to the left and the force vector toward the bottom of the
page, the direction of the magnetic field must be out of the page.
(Remember that we're dealing with a negative charge.) The direc-
tion of the current must be counterclockwise.

REFLECT The current required is directly proportional to the
radius of the coil; the greater the distance from the center to
the conductor, the greater the current required. And the current
required varies inversely with the number of turns; the more turns,
the smaller required current.

Practice Problem: A proton moving through the coil to the
right is deflected toward the bottom of the page. What is the
direction of the current in the coil? Answer: Counterclockwise.



Magnetic Field of a Solenoid

et

S\

T
&

A FIGURE 20.41 Magnetic field lines pro-
duced by the current in a solenoid. For clar-
ity, only a few turns are shown.

B — ,uonl (center of long solenoid).



Solenoid

A long straight coil of wire can be used to generate a nearly uniform magnetic field similar to
that of a bar magnet. Such coils. called solenoids. have an enormous number of practical
applications. The field can be greatly strengthened by the addition of an iron core. Such cores
are typical in glectromagnets.

Ampere's law :
path. The magnetic

field is
concentrated
into a nearly
uniform field
in the center
of a long
solenoid. The
field outside
is weak and
divergent.

B= unl
| Long solenoid
approximation




A variation is the toroidal (doughnut-shaped) solenoid, more commonly

called a toroid, shown in Figure 20.42.

The magnetic field is
confined entirely to
the space enclosed
by the windings.

Current
into page

Cross-sectional view

A FIGURE 20.42 (a) A toroidal solenoid. For
clarity, only a few turns of the winding are
shown. (b) Cross-sectional view. The dashed
black line represents a possible distance r
from the center of the toroid.



20.10 Magnetic Field Calculations

Law of Biot and Savart .
The magnitude AB of the magnetic field AB due to a segment of conductor
with length Al, carrying a current /, is given by

o I Alsing

AB .
T r-

(20.16)



For these field points, r and A7 both lie in the tan-colored
plane, and AB is perpendicular to this plane.

Plane of 7 and Al

Current into plane
of paper

(b) Cross-sectional view

For these field points, 7 and A both lie in the orange-colored
plane, and AR is perpendicular to this plane.

(a) Perspective view



Biot-Savart Law

The Biot-Savart Law relates magnetic fields to the currents which are their
sources. In a similar manner, Coulomb's law relates electric fields to the point
charges which are their sources. Finding the magnetic field resulting from a
current distribution involves the vector product. and is inherently a calculus
problem when the distance from the current to the field point is continuously

changing.

u“!dz X t

2

Magnetic field -
of a current dB —_
glement 4 ﬂ:r

where

dl. = infinitesmal length of conductor
carrying electric current [

] = unit vector to specify the direction
of the the vector distance r from
the current to the field point.




For example, we can use the law of Biot and Savart to derive the expression
for the magnetic field at the center of a circular conducting loop with radius R
and current / (Equation 20.12).

The segment Al the radial line R, and the
magnetic field AB are all mutually
perpendicular.

A FIGURE 20.45 Magnetic field AR caused
by a segment A/ of a circular conducting
loop.

in Figure 20.45. All the segments are at the same distance R from the point P at
the center, and each makes a right angle with the line joining it to P. The vectors
.-."-.E,, _‘xﬁz, and so on, due to the various segments, are all in the same direction,
perpendicular to the plane of the loop, as shown. In Equation 20.16, 6 = 90°,
sinf/ = 1, and r = R, for every segment. The magnitude of the total B field is

given by
B = + Al + ).
ATR? : )
But Al, + Al, + - -+ is the total distance around the loop—that is, the circum-
ference of the loop, 2TR—so
Mol
B = 2R
41 R?( ) = 2R’

in agreement with Equation 20.12.

This formulation is strictly valid only when the conductors are surrounded
with vacuum. When air or any nonmagnetic material is present, the formulation is
in error by only about 0.1% or less. In Section 20.11, we’ll show how to modify
the formulation to take account of the material around the conductors.



Magnetic Field of Current

The magnetic field of an infinitely long straight wire can
be obtained by applying Ampere's law. Ampere's law
Electric takes the form

current

D B Al=p,l

and for a circular path centered on the wire. the
magnetic field is everywhere parallel to the path. The
summation then becomes just

Y B, Al= B2nr

7x B= Mol
2mr
Magnetic field

The constant p 1s the permeability of free space.




Ampere’s Law

Ampeére’s law
When a path is made up of a series of segments As, and when that path links
conductors carrying total current [__.

EBll As = Hﬂjfncl' (2{}]?}



Ampere's Law

The magnetic field in space around an electric current is proportional to the electric current
which serves as its source, just as the electric field in space 1s proportional to the charge
which serves as its source. Ampere's Law states that for any closed loop path. the sum of the
length elements times the magnetic field in the direction of the length element is equal to the

permeability times the electric current enclosed in the loop.

In the electric case, the relation of field to source is quantified in Gauss's Law which 1s a
very powerful tool for calculating electric fields.




Perspective view

Arbitrary closed curve around conductor

Plane of
curve

Top view

Current out of page

é

®
Segment of curve

Magnetic-field component
parallel to segment

Ampeére’s law: If we take the products ByAs for
all segments around the curve, their sum equals
i times the total enclosed current:

PBiASs = gl

A FIGURE 20.46 Ampere’s law for an arbi-
trary closed curve of straight segments
around a pair of conductors.



If several conductors pass through the surface bounded by the path, the total
magnetic field at any point on the path is the vector sum of the fields produced hi
the individual conductors. Then we evaluate Equation 20.17, using the total B
field at each point and the total current [, enclosed by the path. The result equals
Lo times the algebraic sum of the currents. We need a sign rule for the currents;
here it 1s: For the surface bounded by our Ampére’s-law path, take a line perpen-
dicular to the surface and wrap the fingers of your right hand around this line so
that your fingers curl around in the same direction you plan to go around the path
when you evaluate the B, As sum. Then your thumb indicates the positive current
direction. Currents that pass through the surface in that direction are positive;
those in the opposite direction are negative.



20.11 Magnetic Materials
In all of the preceding discussion of magnetic fields caused by
currents, we’ve assumed that the space surrounding the conductors
contains only vacuum. If matter is present in the surrounding space,
the magnetic field is changed. The atoms that make up all matter
contain electrons in motion, and these electrons form microscopic
current loops that produce magnetic fields of their own. In many
materials, these currents are randomly oriented, causing no net
magnetic field.
But in some materials, the presence of an externally caused field
can cause the loops to become oriented preferentially with the field
so that their magnetic fields add to the external field. We then say
that the material is magnetized.



Paramagnetism

A material showing the behavior we’ve just described is said to be paramagnetic.
The magnetic field at any point in such a material is greater by a numerical factor
K, than it would be in vacuum. The value of K, is different for different materi-
als; it is called the relative permeability of a material. For a given material, K,
depends on temperature; values of K, for common paramagnetic materials at
room temperature are typically 1.000002 to 1.0004.

All the equations in this chapter that relate magnetic fields to their sources
can be adapted to the situation in which the conductor is embedded in a paramag-
netic material by replacing 11, everywhere with K 1, This product is usually
denoted as pu; it is called the permeability of the material:

1w = K. 1o (20.18)

NOTE » Remember that in this context p 1s magnetic permeability, not the
magnetic moment we defined in Section 20.6. Be careful! «



Diamagnetism

The orbital motion of electrons creates tiny
atomic current loops, which produce
magnetic fields. When an external magnetic
field is applied to a material, these current
loops will tend to align in such a way as to
oppose the applied field. This may be viewed
as an atomic version of Lenz's law: induced
magnetic fields tend to oppose the change
which created them. Materials in which this
effect is the only magnetic response are
called diamagnetic.



http://hyperphysics.phy-astr.gsu.edu/hbase/electric/farlaw.html

Magnetic Domains

The microscopic ordering of electron spins characteristic of ferromagnetic

materials leads to the formation of regions of magnetic alignment called

domains.
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In bulk material
the domains
usually cancel,
leaving the
material
unmagnetized.

[111]

Externally
applied
magnetic field.

Iron will become magnetized in the
direction of any applied magnetic
field. This magnetization will produce
a magnetic pole in the iron opposite to
that pole which is nearest to
it, s0 the iron will be attracted
to either pole of a magnet.







Magnetism; Fields and Forces

(Sections 20.1 and 20.2) A bar magnet has a north (N) pole and a
south (S) pole. Two opposite poles attract each other, and two like
poles repel each other. A moving charge creates a magnetic field
in the surrounding space. A moving charge, or current, experiences
a force in the presence of a magnetic field. The direction of the
force is given by the right-hand rule for magnetic forces, and the
magnitude is given by Equation 20.1.

Motion of Charged Particles in Magnetic Fields

(Sections 20.3 and 20.4) The magnetic force is always perpendicular
to U; a particle moving under the action of a magnetic field alone
moves with constant speed. In a uniform field, a particle with ini-
tial velocity perpendicular to the field moves in a circle with radius
R given by R = mv/|q|B (Equation 20.4). Mass spectrometers use
this relationship to determine atomic masses. When a positive ion
of known speed undergoes circular motion in a magnetic field of
known strength, the mass can be determined by measuring the
radius.

The orbit of a positive charge

% in a uniform magnetic field.

Magnetic Force on a Current-Carrying Conductor

(Section 20.5) When a current-carrying conductor is in the presence
of a magnetic field, the field exerts a force on the conductor
because each individual charge in the current is acted upon by a
force given by F = |g|vBsin¢ (Equation 20.1). The direction of
the force is determined by using the same right-hand rule that we
used for a moving positive charge. The magnitude of the force is
given by F = [IB, = [IBsin¢ (Equation 20.7).
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Force and Torque on a Current Loop; Direct-Current Motors
(Section 20.6) A current loop can be represented as connected seg-
ments of current-carrying conductors. In the presence of a mag-
netic field, each segment is acted upon by a force due to the field.
In a uniform magnetic field, the total force on a current loop is
zero, regardless of its shape, but the magnetic forces create a
torque 7 given by 7 = [AB sin¢ (Equation 20.8). A direct-current
motor is driven by torques on current-carrying conductors. The key
component is the commutator, which is used to reverse the direc-
tion of the current in order to maintain the torque.

X (direction
normal to loop)

Magnetic Field of a Long, Straight Conductor

(Sections 20.7 and 20.8) Moving charges, and therefore currents, pro-
duce magnetic fields. When a current passes through a long, straight
wire, the magnetic field lines are circles centered on the wire. Due to
this symmetry of the field pattern, the magnitude of the magnetic
field is the same at all points on a field line at radial distance r:

I
) (20.10)
2arr

Current-carrying conductors can exert magnetic forces on each
other. Thus, two parallel wires can attract or repel each other,
depending on the direction of the currents they carry. For two long,
straight parallel wires, the force per unit length is

= — (20.11)



Current Loops and Solenoids

(Section 20.9) Many practical devices depend on the magnetic field
produced at the center of a circular coil of wire. If a coil of radius R
consists of N loops, the magnetic field at the center is

FU,DNI

B=——. 20.13

R ( )

A long solenoid of many closely spaced windings produces a

nearly uniform field in its interior, midway between its ends, hav-
ing magnitude B = p nf (Equation 20.14).

Magnetic Field Calculations
(section 20.10) The magnetic field magnitude AB created by a short
current-carrying segment A/ is given by the law of Biot and Savart:

1o I Alsing
AB =12
4 r?

, (20.16)

To determine the magnetic field from an extended current-carrying
wire, first consider the extended wire as being made of many
smaller segments. Then, using the principle of superposition at a
particular point in space, compute the vector sum of the magnetic
field due to each small segment of current.

When a current [ is enclosed by a path made of many small
segments As, and when at each point the magnetic field has a com-
ponent B parallel to the segments, Ampeére’s law states that

SB,As = polog. (20.17)

If the products of the magnetic field component B, and each seg-
ment As (that is, the components B, As) are summed around any
path enclosing a total current [, ., the result is pg/onq.

AB=0

Plane of 7 and ;‘l?




Magnetic Materials

(Section 20.11) For magnetic materials, the magnetization of the
material causes an additional contribution to B. For paramagnetic
and diamagnetic materials, 1, 1s replaced in magnetic-field expres-
sions by . = K. where 1 is the permeability of the material and
K, is its relative permeability. For ferromagnetic materials, K, is
much larger than unity. Some ferromagnetic materials are perma-
nent magnets, retaining their magnetization even after the external
magnetic field 1s removed.



