Nuclear and Particle Physics

Dr P Lawson

Stable and unstable nuclei we have done REMEMBER ITS IN THE TOPICS SECTION

Check

STUDENT FORUM \Dr Lawson\A'Level\Physics

physics spec.pdf

Edexcel physics student guide.pdf

Murry Gell-Mann

From you to the quark

The Matter Particles

How do we know about quarks?

Rutherford found a nucleus in the atom by firing alpha particles at gold and seeing them bounce back

Fire electrons at protons: See big deflections!

Late 1960's

The Matter particles

From you to the quark

How do quarks combine?

A proton:

two 'u' quarks and one 'd' quark

A neutron: 2 'd' quarks and 1 'u' quark With 6 quark types there are hundreds of combinations

Mesons have a quark and an anti-quark

Many created, not stable

Forces in Particle Physics

High energies and small distances ⇔ quantum mechanics

Continuous field \rightarrow exchange of quanta

Particles and forces

	'u' quarks	'd' quarks	electron	neutrino
E.M. charge	+2/3	-1/3	-1	0
Strong force	yes	yes	no	no
Weak force	yes	yes	yes	yes

Heavier generations have identical pattern

FERMIONS spin = $1/2$, $3/2$, $5/2$,					,	
Leptons spin = 1/2			Quarl	Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	
$\nu_{e} \stackrel{\text{electron}}{}_{\text{neutrino}}$	<1×10 ⁻⁸	0	U up	0.003	2/3	
e electron	0.000511	-1	d down	0.006	-1/3	
$ u_{\mu}^{\text{muon}}$ neutrino	<0.0002	0	C charm	1.3	2/3	
$oldsymbol{\mu}$ muon	0.106	-1	S strange	0.1	-1/3	
$ u_{ au}^{ ext{tau}}$ neutrino	<0.02	0	t top	175	2/3	
$oldsymbol{ au}$ tau	1.7771	-1	b bottom	4.3	-1/3	

~

attor constituents

BOSONS			force carriers spin = 0, 1, 2,			
Unified Electroweak spin = 1			Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	g gluon	0	0	
W ⁻	80.4	-1				
W+	80.4	+1				
Z ⁰	91.187	0				

Mesons qq

Mesons are bosonic hadrons. There are about 140 types of mesons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
π^+	pion	ud	+1	0.140	0
K -	kaon	sū	-1	0.494	0
$ ho^+$	rho	ud	+1	0.770	1
B ⁰	B-zero	db	0	5.279	0
η_{c}	eta-c	ςΣ	0	2 .980	0

