

$$P = \frac{M}{V} \qquad \frac{1}{2}(V+V) = \frac{x}{L} \qquad \alpha = \frac{V-U}{L} \qquad F = m\alpha$$

$$V = \frac{1}{L} \qquad A = \frac{V-U}{L} \qquad F = m\alpha$$

$$V = \frac{1}{L} \qquad V = \frac{1}{L} \qquad A = \frac{V-U}{L} \qquad F = \frac{1}{L} \qquad A = \frac{1$$

18 ELECTRIC FIELDS

Jensels P = M mass P = M mass P = M P

Device:	Radiation:	Details of use:		
Endoscope	Visible light	Viewing inside stomach, intestines etc	TIR down optical fibres	
CAT scanner	X-Rays	See 3D images of bones or soft tissues.	A computer builds up 3D images	Safety Ease of use Frequency / wave length Intensity Penetration Ionising / non-ionising
Fluoroscope	X-Rays	Positioning catheters or stents in body	Video camera produces real time images	
Thermal imager/IR Thermometer	IR	Detects infections, muscle injuries	More IR produced from warmer parts of body. IR camera produces a map.	
Pulse Oximeter	Red/IR	Measure oxygen levels in the blood.	Light passed through finger and absorbed by blood	
PET Scanner	Gamma	Detecting Cancers	Electron/positron annihilation	
X-Ray machine	X-Rays	Broken bones	X-Rays absorbed more by hard tissues, pass through soft ones.	
Gamma Camera	Gamma	Viewing soft, internal organs	A radioactive source is injected. Gamma rays given off are detected by special film.	

Angle /°	Numbers proportional to number of particles scattered at more than ϕ
120	154
105	266
90	448
75	767
60	1 384
45	2 811
30	7 725
15	458 000

Testing the analogue by graph

The hill is shaped so that the height is proportional to 1/r (see figure 3) and will provide an exact gravitational analogue of the repulsive electric field around a nucleus. If results show that a moving ball is deflected by this hill in the way that α -particles are deflected by gold nuclei, we can obtain clear support for the idea that α -scattering is produced by an electrically charged nucleus.

If the hill is a good model, the relation between p^2 and the angle ϕ for the hill should be the same as the relation between the *number of* α -particles scattered through more than ϕ and the angle ϕ . The data calculated from Geiger and Marsden's results is given in the table left.

Plot a graph of number of α -particles scattered at more than an angle ϕ (y-axis) against the angle ϕ (x-axis).

A graph of p^2 against ϕ for measurements made with the hill should have just the same shape as the graph from Geiger and Marsden's data for α -scattering.

However, the two sets of data have to be brought onto a common scale. To do this, we will make the two sets of results fit at one point and then see if the rest fall into line.

From your results select p₁, one value of p which produces a scattering angle of between 25° and 40°. We will call this angle ϕ_1 . (Select a value of scattering angle ϕ_1 in the middle of the curve.) From your graph record N_1 , the number of particles which are scattered through an angle of more than ϕ_1 (see figure 4). To make the vertical scale the same for both sets of results, the values of p^2 must be multiplied by a

$$k = \frac{N_1}{p_1^2}$$

Calculate k . Record the corrected values of p^2 where corrected value of $p^2 = k \times \text{actual value of } p^2.$

Plot a graph of the 'corrected values of ρ^{3} ' against ϕ on the graph of number of α -particles scattered at more than any angle ϕ against ϕ (using the same axes).

Conclusions

Concrusions

Compare the graph you have obtained from the analogue experiment with the graph you have plotted from Geiger and Marsden's results. Say whether *your* results support the speculation that an α -particle is scattered near a nucleus by an electrical force which varies as $1/r^2$.

