Formula Sheets (PHY111)

Vectors and Vector Components (angle is counterclockwise from positive x -axis)
$A_{x}=A \cos \theta$
$A_{y}=A \sin \theta$
$A=\sqrt{\left(A_{x}{ }^{2}+{A_{y}}^{2}\right)}$
$\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$

Linear Equations of Motion (x and y are interchangeable)

$v_{x}=\frac{\Delta x}{\Delta t}$
$a=\frac{\Delta v}{\Delta t}$
$v_{y}=v_{0}+a t$
$\Delta y=\left(\frac{v_{0}+v}{2}\right) t$
$\Delta y=v_{0} t+1 / 2 a t^{2}$
$v^{2}=v_{0}{ }^{2}+2 a \Delta x$
Range $=\frac{v_{0}{ }^{2} \sin 2 \theta_{0}}{g}$

Work Energy and Power

$K . E \cdot l i n=\frac{1}{2} m v^{2}$
$U_{g}=m g y$
$F=k x$
$U_{e}=\frac{1}{2} k x^{2}$
$W=F . s=F s \cos \theta$
$P=\frac{W}{t}=F v$
$\boldsymbol{f}_{\boldsymbol{k}}=\mu_{\boldsymbol{k}} \boldsymbol{n}$
$f_{s} \leq \mu_{s} n$

Momentum
$\boldsymbol{p}=\boldsymbol{m} \boldsymbol{v}$
Newton's law
$\sum \boldsymbol{F}=\boldsymbol{m a}$
Impulse
$J=F \Delta t$

Elastic collisions only
$v_{b f}-v_{a f}=-\left(\boldsymbol{v}_{b i}-v_{a i}\right)$

Rotational motion equations

$\omega=\frac{\Delta \theta}{\Delta t} \quad \alpha=\frac{\Delta \omega}{\Delta t}$
$\omega=\omega_{0}+\alpha t$
$\Delta \boldsymbol{\theta}=\left(\frac{\left(\omega_{0}+\omega\right)}{2}\right) \boldsymbol{t}$
$\Delta \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\Delta \theta=\omega t-\frac{1}{2} \alpha t^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \Delta \theta$
$v_{\text {lin }}=\omega r$
$a_{t a n}=r \alpha$
$a_{r a d}=\omega^{2} r$
$a_{\text {linear }}=\sqrt{a_{t a n}{ }^{2}+a_{r a d}{ }^{2}}$
$K . E_{\text {rot }}=\frac{1}{2} I \omega^{2}$
$I=m r^{2}$
$\mathbf{W}=\boldsymbol{\tau} \boldsymbol{\Delta} \boldsymbol{\theta}$
$\Sigma \tau=I \alpha$
$\boldsymbol{\tau}=\boldsymbol{F l}$
$P=\boldsymbol{\tau} \omega$
$L=I \omega$

Falling mass (m) from solid cylinder (M) only

$a=\frac{g}{1+\frac{M}{2 m}}$
$\alpha=\frac{a}{r}$

TABLE 9.2 Moments of inertia for various bodies

(a) Slender rod,
axis through center

$$
I=\frac{1}{2} M\left(R_{1}^{2}+R_{2}^{2}\right)
$$

(e) Hollow cylinder
(b) Slender rod, axis through one end

(f) Solid cylinder
(c) Rectangular plate, axis through center

(g) Thin-walled hollow cylinder
(d) Thin rectangular plate, axis along edge

(h) Solid sphere

(i) Thin-walled hollow sphere

