1 Quiz 1 (Basics and Vectors)

In this quiz you will get the same questions but with different numbers.
You will not get all 10 questions but will get a random selection of 5 of them. You, therefore, need to understand how to solve them all.

1) A speed of 88 miles per hour in m / s is $(1$ mile $=1609 \mathrm{~m})$

Solution:

$$
88 \frac{\text { miles }}{\mathrm{hr}} \frac{1609 \mathrm{~m}}{1 \text { mile }} \frac{1 \mathrm{hr}}{60 \mathrm{mins}} \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=38 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

2) The wavelength of a certain laser is 0.80 microns. Where 1 micron $=1 \times 10^{-6} \mathrm{~m}$. What is this wavelength in nanometers? $\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$
Solution:

$$
0.80 \mu m \frac{10^{-6} m}{1 \mu m} \frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}=800 \mathrm{~nm}
$$

3) Express $\left[8.3 \times 10^{3}\right]^{-1 / 2}$ in scientific notation.

Solution:

$$
=1.1 \times 10^{-2}
$$

4) What is $0.176 / 2.3$ to the proper number of significant figures?

Solution:

$$
\frac{0.176}{2.3}=0.07652=0.077
$$

5) Estimate the number of times an average person's heart beats in a lifetime. Assume the average heart rate is 72 beats/min and a life span of 95 years
Solution:

$$
72 \frac{\text { beats }}{\text { min }} \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \frac{24 \mathrm{hr}}{1 \text { day }} \frac{365 \text { day }}{1 \text { year }} \times 95=4 \times 10^{9} \text { beats }
$$

6) What is $0.034^{1 / 3}$, to the proper number of significant figures?

Solution:

$$
0.034^{1 / 3}=0.32
$$

7) The components of vector \mathbf{A} are given as follows:

$$
\begin{gathered}
A_{x}=+10.4 \\
A_{y}=-3.6
\end{gathered}
$$

The magnitude of \mathbf{A} is closest to:
Solution:

$$
\sqrt{10.4^{2}+3.6^{2}}=11
$$

8) The components of vector \mathbf{A} are given as

$$
\begin{aligned}
& A_{x}=+0.4 \\
& A_{y}=-1.3
\end{aligned}
$$

follows:
The angle measured counterclockwise from the x-axis to vector \mathbf{A}, in degrees, is

$$
\begin{gathered}
\tan ^{-1}\left(\frac{|y|}{|x|}\right)=\tan ^{-1}\left(\frac{1.3}{0.4}\right)=73^{\circ} \\
\theta=360^{\circ}-73^{\circ}=287^{\circ}
\end{gathered}
$$

9) The components of vectors \mathbf{A} and \mathbf{B} are given as follows:

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{x}}=+8.3 & \mathrm{~B}_{\mathrm{x}}=-6.7 \\
\mathrm{~A}_{\mathrm{y}}=-4.2 & \mathrm{~B}_{\mathrm{y}}=-3.0
\end{array}
$$

The magnitude of the vector difference $\mathbf{B}-\mathbf{A}$, is
Solution:

$$
\begin{array}{c|l|l}
& \mathrm{x} & \mathrm{y} \\
\hline \mathrm{~B} & -6.7 & -3.0 \\
\mathrm{~A} & 8.3 & -4.2 \\
\hline \mathrm{~B}-\mathrm{A} & -15 & 1.2 \\
|\vec{B}-\vec{A}|=\sqrt{15^{2}+1.2^{2}}=\quad 15.1
\end{array}
$$

10) Find the magnitude of the resultant R of the three vectors shown in Figure 2.1. The vectors have the following magnitudes: $\mathrm{A}=8.0, \mathrm{~B}=10$, and $\mathrm{C}=11$.

Figure 2.1: Three vectors
Solution:

	X	Y
A	8	0
B	$10 \cos 120$	$10 \sin 120$
C	0	-11
$\mathrm{R}=\mathrm{A}+\mathrm{B}+\mathrm{C}$	3	-2.3

$$
R=\sqrt{\left(3^{2}+2.3^{2}\right)}=3.8
$$

