Quiz 3 (Energy and Momentum)

In this quiz you will get the same questions but with different numbers.

You will not get all 6 questions but will get a selection of 4 of them. You, therefore, need to understand how to solve them all.

1) A child does 200 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.0 m above the ground. What is the mass of the box?

Solution:

$$
\begin{gathered}
\mathrm{W}=\mathrm{F} . \mathrm{s} \\
200=(\mathrm{m} \times 9.8) 4 \\
\mathrm{~m}=5.1 \mathrm{~kg}
\end{gathered}
$$

2) A spring with a spring constant of $10 \mathrm{~N} / \mathrm{m}$ is stretched from equilibrium to 2.9 m . How much work is done in the process?

Solution:

$$
\begin{aligned}
U_{e} & =\frac{1}{2} k x^{2}=\frac{1}{2} 102.9^{2} \\
& =42.1 \mathrm{~J}
\end{aligned}
$$

3) A 31 g bullet pierces a sand bag 29.0 cm thick. If the initial bullet velocity was $20 \mathrm{~m} / \mathrm{s}$ and it emerged from the sandbag with $11 \mathrm{~m} / \mathrm{s}$, what is the magnitude of the friction force (assuming it to be constant) the bullet experienced while it traveled through the bag?
Solution:

$$
\begin{gathered}
F=m a \Rightarrow a=? \\
v^{2}=v_{0}^{2}+2 a \Delta x \\
a=-481 \mathrm{~m} / \mathrm{s}^{2} \\
F=31 \times 10^{-3}(-481)=-15 \mathrm{~N}
\end{gathered}
$$

4) A prankster drops a water balloon from the top of a building on an unsuspecting person on the sidewalk below. If the balloon is traveling at $50 \mathrm{~m} / \mathrm{s}$ when it strikes a person's head (1.5 m above the ground), how tall is the building? Neglect air resistance.
Solution:

$$
\begin{gathered}
v^{2}=v_{o}^{2}+2 a \Delta y \\
50^{2}=0^{2}+2(-9.8) \Delta \mathrm{y} \\
\Delta \mathrm{y}=-128 \mathrm{~m}
\end{gathered}
$$

height $=128+1.5=129.5 \mathrm{~m}$
5) A 324 kg car moving at $19.1 \mathrm{~m} / \mathrm{s}$ hits from behind another car moving at $12.1 \mathrm{~m} / \mathrm{s}$ in the same direction. If the second car has a mass of 495 kg and a new speed of $17.6 \mathrm{~m} / \mathrm{s}$, what is the velocity of the first car after the collision?
Solution:

$$
\begin{aligned}
p_{A i}+p_{B i} & =p_{A f}+p_{B f} \\
324 \times 19.1+495 \times 12.1 & =324 \times v_{A f}+495 \times 17.6 \\
v_{A f} & =10.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6) A car of mass 1411 kg collides head-on with a parked truck of mass 2000 kg . Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is $17 \mathrm{~km} / \mathrm{h}$ (in the same direction as the car's initial velocity) after the collision, what is the initial speed of the car?
Solution:

Momentum:

$$
\begin{aligned}
p_{A i}+p_{B i} & =p_{A f}+p_{B f} \\
1411 \times v_{A i}+0 & =1411 \times v_{A f}+2000 \times 17 \Rightarrow \text { two unknowns } \\
v_{B f}-v_{A f} & =-\left(v_{B i}-v_{A i}\right) \\
17-v_{A f} & =-\left(0-v_{A i}\right) \\
v_{A f} & =17-v_{A i}
\end{aligned}
$$

-sub. in first equ. :

$$
\begin{aligned}
1411 \times v_{A i} & =1411 \times\left(17-v_{A i}\right)+34,000 \\
v_{A i} & =20.5 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

