# Dynamics of Rotational Motion 

Chapter 10


## Goals for Chapter 10

- To study torque.
- To relate angular acceleration and torque.
- To examine rotational work and include time to study rotational power.
- To understand angular momentum.
- To examine the implications of angular momentum conservation.
- To study how torques add a new variable to equilibrium.
- To see the vector nature of angular quantities.

Use the study area as we go through
the slides

STUDY AREA

Chapter 10
Assets

## VTD Walking the plank

VTS Ex 10.1

PhET Torque

Chapter 10: Dynamics of Rotational Motion
Home > Chapter 10: Dynamics of Rotational Motion > Chapter 10 Assets

Chapter 10 Assets
Video Tutor Demonstrations
Walking the plank
Spinning Person Drops Weights
Off-Center Collision
Balancing a Meter Stick
Conservation of Vector Angular Momentum
Conservation of Angular Momentum
Video Tutor Solutions
Example 10.1 A weekend plumber
Example 10.2 Unwinding a winch (again).
Example 10.3 Dynamics of a bucket in a well
Example 10.4 Dynamics of a primitive yo-yo
Example 10.5 A rolling bowling ball
Example 10.6 Work and power of an electric motor
Example 10.7 A kinetic sculpture
Example 10.8 Two rotating disks interacting
Example 10.9 Anyone can be a ballerina
Example 10.10 Angular momentum in a crime bust
Example 10.11 Playingon a seesaw
Example 10.12 Climbing a medieval ladder
Example 10.13 Equilibrium and pumpingiron
Example 10.14 A laboratory_gyroscope
Chapter 10 Bridging_Problem

Torque

Torque (a.k.a. moment) of a force


## Torque (a.k.a. moment) of a force



## Torque

The tendency of a force to cause or change rotational motion about a certain axis.

$$
\tau=F l
$$

- I is called the lever arm. This is the perpendicular distance from the line of force to the axis of rotation.
- If Force and distance to axis are perpendicular, then its just Fl.
- Positive sense of rotation is counter-clockwise

The lever arm is the perpendicular distance from the line of force to the axis of rotation.


Three examples of torque exerted on a wrench of length 20 cm .

Calculate the torque acting on the pipe shown due to the $900-\mathrm{N}$ force.

$V_{T_{S}} E_{X 20.1}$


Torque $=$ Force $\times$ perpendicular Distance
$=900 \times($ lever $($ or moment arm $))$
$=900^{*} \mathrm{~L}$
$=900^{*} 0.8 \cos 19$
$=680 \mathrm{Nm}$

## Torque and Angular Acceleration

Total force on particle $A$
Tangential component:
Only this component


## Torque and Angular Acceleration

- For rotational motion: $\mathrm{F}_{\tan }=\mathrm{ma}_{\tan }$. (Newton's $2^{\text {nd }}$ Law)
- But $a_{\tan }=r^{*} \alpha$,
- Thus $\mathrm{F}_{\mathrm{tan}}=\mathrm{m} r \boldsymbol{\alpha}$
- $F_{t a n} r=m r \alpha r$
- $F_{\tan } r=\tau=\left(m^{*} r^{2}\right) \alpha=I \alpha$
- Since: $I=m^{*} r^{2} \quad$ (Which is what we had before)


## Torque and Angular Acceleration



Net Torque or Sum of all the Torque is equal to the Moment of Inertia * Angular Acceleration. REMEMBER: Only $F_{\text {tan }}$ contributes to this and not $F_{\text {rad }}$

A cable is wrapped several times around a uniform solid
9.0 N cylinder with diameter 0.12 m and mass 50 kg that can rotate freely about its axis.
The cable is pulled by a force with magnitude 9.0 N . If the cable unwinds without stretching or slipping, find the magnitude of its acceleration.


## Solution...

- The Force is at a tangent on the cylinder; thus the Moment Arm is the radius $=0.06 \mathrm{~m}$. The Torque is the Force * Distance:

$$
\text { Torque }=F^{*} d=9.0^{*} 0.06=0.54 \mathrm{Nm}
$$

$$
\text { The } \mathrm{Mol}_{\mathrm{Disc}}=1 / 2 \mathrm{mr}^{2}=1 / 2 * 50 * 0.06^{2}=0.09 \mathrm{kgm}^{2}
$$

$$
\text { Angular Accel. }=\alpha=\tau / I=0.54 / 0.09=6.0 \mathrm{rad} / \mathrm{s}^{2}
$$

Linear Acceleration $=\mathrm{a}=\mathrm{R} * \alpha=0.06 * 6.0=0.36 \mathrm{~m} / \mathrm{s}^{2}$

You will get these equations in the exam. They are used JUST for
 the falling rock on rotating winch. See end of slides for derivation.

## Falling mass ( m ) from solid cylinder ( M ) only

$$
a=\frac{g}{1+\frac{M}{2 m}}
$$

$$
\alpha=\frac{a}{r}
$$

Linear acceleration
angular acceleration

## Work, Energy and Torque

The flywheel of a motor has a mass of 300.0 kg and a moment of inertia of $580 \mathrm{~kg} \mathrm{~m}{ }^{2}$. The motor develops a constant torque of 2000.0 N m , and the flywheel starts from rest.
(a) What is the angular acceleration of the flywheel?
(b) How much work is done by the motor during the first 4.00 revolutions?
(c) What is its angular velocity after it makes 4.00 revolutions?

First we calculate the angular acceleration:
$\tau=\mathrm{I} \alpha, \mathrm{I}=580 \mathrm{kgm}^{2}$ and $\tau=2000 \mathrm{~N}$.

Therefore: $\alpha=\frac{\tau}{I}=\frac{2000}{580}=3.45 \mathrm{rad} \mathrm{s} \mathrm{s}^{-2}$

Next the Work Done:
$W=\tau \Delta \theta=2000^{*} 8 \pi=16,000 \pi$ or $50,625 \cdot 48$ Joules

## Solution cont...

- Angular Velocity after the 4 revolutions:

As $\boldsymbol{\omega}$ changes with time we could solve that way.....but we have 2 ways in reality with equations of motion.....

$$
\begin{array}{lll}
\Delta \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} & \text { or } & \omega^{2}=\omega_{o}{ }^{2}+2 \alpha \Delta \theta \\
8 \pi=0+\frac{1}{2} * 3.45 * t^{2} & \text { or } & \omega^{2}=0+(2 * 3.45 * 8 \pi) \\
t=3.817 \text { seconds. } & & \omega^{2}=\mathbf{1 7 3 . 4 1 6} \\
t=13.17 \text { rads }^{-1}
\end{array}
$$

Now: $\boldsymbol{\omega}=\omega_{0}+\boldsymbol{\alpha} \boldsymbol{t}$
$\omega=0+3.45 * 3.817$
$\omega=13.17 \mathrm{rads}^{-1}$
Both Calculations give the Same Answer !!

There is more than one way to solve section c
A student in a class looked at energy considerations.
Work done = energy transferred.
The energy transferred is the KE.

$$
\begin{aligned}
W & =\frac{1}{2} I \omega^{2} \\
50,625 & =\frac{1}{2} 580 \quad \omega^{2}
\end{aligned}
$$

So $\omega=13.2 \mathrm{rad} \mathrm{s}^{-1}$

## Angular Momentum of a rigid body

When a rigid body with moment of inertia I (with respect to a specified symmetry axis) rotates with angular velocity $\omega$ about that axis, the angular momentum $L$ of the body with respect to the axis is the product of the moment of inertia $I$ about the axis and the angular velocity $\omega$.

$$
L=I \omega
$$

## Angular and Linear Momentum

Angular momentum and linear momentum are examples of the parallels between linear and rotational motion. They have the same form and are subject to the fundamental constraints of conservation laws, the conservation of momentum and the conservation of angular momentum .


## Torque and Angular Momentum

We can now combine equations to make new ones

$$
\sum \tau=I \alpha=I \frac{\Delta \omega}{\Delta t}=\frac{\Delta L}{\Delta t}
$$

$$
\left(\text { This can also be done for the linear equations } \quad \sum F=m a=m \frac{\Delta v}{\Delta t}=\frac{\Delta p}{\Delta t}\right)
$$

## Mobile Example

## VTS Ex 10.7

A part of a mobile suspended from the ceiling of an airport terminal building consists of two metal spheres, each with mass 2.0 kg , connected by a uniform metal rod with mass 3.0 kg and length of 4.0 m . The assembly is suspended at its midpoint by a wire and rotates in a horizontal plane, making 3.0 revolutions per minute. Find the angular momentum and kinetic energy of the assembly.


Find the angular momentum (L) and kinetic energy of the assembly.


- First we have to find the Mol through the midpoint of this assembly.

$$
L=\| \omega \quad \text { and } \quad K \cdot E_{\cdot a n g}=1 / 2 I \omega^{2}
$$

So firstly for the spheres (treat as point particles):

$$
I_{\text {sphere }}=m r^{2}=2 * 2^{2}=8 \mathrm{kgm}^{2}
$$

So for 2 spheres we have $2 * 8=16 \mathrm{kgm}^{2}$
Now the rod:

$$
\mathrm{I}_{\mathrm{rod}}=1 / 12 \mathrm{ML}^{2}=1 / 12 * 3 * 4^{2}=4 \mathrm{kgm}^{2}
$$

So the grand total of Mol is: $16+4=20 \mathrm{kgm}^{2}$ Convert to Rads: $\omega=3 \mathrm{rpm} *(2 \pi / 60)=0.31 \mathrm{rad} / \mathrm{s}$

## Solution continued...

- Now we can simply use the Angular Momentum and Angular K.E. Equations...

Momentum $_{\text {ang }}=L=I \omega=20 * 0.31=6.2 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$

$$
K \cdot E_{\text {ang }}=1 / 2 I \omega^{2}=1 / 2 * 20 * 0.31^{2}=0.96 \mathrm{kgm}^{2} \mathrm{~s}^{-2}
$$

## Angular Momentum Is Conserved

- The first figure shows the figure skater with a large moment of inertia.
- In the second figure, she has made the moment much smaller by bringing her arms in.
- Since $L$ is constant, $\omega$ must increase.


VTD Conservation of angular momentum

## Conservation of angular momentum (L)

## The total angular momentum of an isolated system is constant.

$$
\sum L_{i}=\sum L_{f}
$$



An acrobatic physics professor stands at the center of a turntable, holding his arms extended horizontally, with a 5.0 kg dumbbell in each hand. He is set rotating about a vertical axis, making one revolution in 2.0 s.

His moment of inertia (without the dumbbells) is $3.0 \mathrm{~kg} \mathrm{~m}^{2}$ when his arms are outstretched, and drops to $2.2 \mathrm{~kg} \mathrm{~m}^{2}$ when his arms are pulled in close to his chest.
The dumbbells are 1.0 m from the axis initially and 0.20 m from it at the end. Find the professor's new angular velocity if he pulls the dumbbells close to his chest, and compare the final total kinetic energy with the initial value.

$$
T=\text { period }=2.0 \mathrm{~s}
$$



Find New angular velouts when close to chest
$T=$ periad $=2.0 \mathrm{~s}$

$n_{0} I=I_{\text {without dumbell }}=3.0 \mathrm{ky} \mathrm{m}^{2}$
$I_{\text {mihhout }}^{\text {outstanced }}$ mibell $=2.2 \mathrm{kgm}^{2}$
close to chest
Find New angular velouts when close to chest
one revolution in 2.0 s .

## - 0

0.20 n

## Solution...

- We should know that by Conservation of Momentum:

$$
\mathrm{L}=I i \omega_{i}=I f \omega_{f}
$$

For each case we need $\mathrm{I}_{\text {total }}$ so we do this for both cases:

$$
\begin{gathered}
I_{\text {total }}=I_{\text {professor }}+I_{\text {dumbells }} \\
I_{\text {initial }}=3+\left(2 * 5 * 1^{2}\right)=13 \mathrm{kgm}^{2} \\
I_{\text {final }}=2.2+\left(2 * 5 * 0.2^{2}\right)=2.6 \mathrm{kgm}^{2}
\end{gathered}
$$

$\boldsymbol{\omega}_{\boldsymbol{i}}=1$ Revolution in 2 seconds $=\frac{2 \pi}{2}=\pi \mathrm{rad} / \mathrm{s}$
We Now Use The Conservation of Momentum.....

## Solution Cont...

- Using out initial equation...

$$
\begin{gathered}
I_{i} \omega_{i}=I f \omega_{f} \\
13 * \pi=2.6 * \omega_{f}
\end{gathered}
$$

$13 \pi / 2.6=\omega_{f}=5 \pi \mathrm{rad} / \mathrm{s}$ or $15.71 \mathrm{rad} / \mathrm{s}$ This is an Angular Velocity increase of $\mathbf{5}$ times !!

For the Angular Kinetic Energy:

$$
\begin{aligned}
& \text { K.E. } \text { initial }=1 / 2 \boldsymbol{I}_{i} \boldsymbol{\omega}_{i}^{2}=1 / 2 * 13 * \boldsymbol{\pi}^{2}=\mathbf{6 4} \text { Joules } \\
& \text { K.E.final }=1 / 2 \boldsymbol{I}_{f} \boldsymbol{\omega}_{f}^{2}=1 / 2 * 2.6 * 5 \pi^{2}=\mathbf{3 2 0} \text { Joules }
\end{aligned}
$$

Where has this Gain in Angular K.E. come from?

## Equilibrium of a rigid body

## First Condition for Equilibrium



Translational Equilibrium

Rotational Equilibrium

## Second Condition for Equilibrium

The sum of the torques due to all forces acting on the body, with respect to ANY axis must be zero

## Center of gravity

$$
\Sigma F_{x}=0 \text { and } \Sigma F_{y}=0 \quad \Sigma \tau=0
$$

Where do you place the string so that this cutout will hang horizontally?

1. Hold the cutout by any point on its edge and allow it to hang freely. A vertical line drawn from your hand passes through the center of gravity.
2. Repeat the process, holding the cutout at a different point. The spot where your two lines cross is the center of



When suspended from the center of gravity, the cutout hangs level.

## Torque Equilibrium Examples

Most equilibrium problems require the application of force as well as torque for their solution, but the examples below illustrate equilibrium of torque.


https://phet.colorado.edu/sims/html/bala ncing-act/latest/balancing-act en.html


In equalibrium (balonad)

$$
\begin{gathered}
\sum \tau=0 \\
\tau+\tau_{2}=0 \\
\left(+F_{1} l_{1}\right)+\left(-F_{2} l_{2}\right)=0 \\
F_{1} l_{1}=F_{2} l_{2} \\
\tau G=\tau \tau
\end{gathered}
$$

You and a friend play on a seesaw. Your mass is 90 kg , and your friend's mass is 60 kg . The seesaw board is 3.0 m long and has negligible mass. Where should the pivot be placed so that the seesaw will balance when you sit on the left end and your friend sits on the right end?

$\sqrt{1 / 5}_{5+20.78}$

## Solution...

A small diagram will help us here:
First we need the Torque

(a) Sketch of physical situation for ourselves:
$\tau_{\text {me }}=$ Mass * Gravity * Distance
$\tau_{\mathrm{me}}=90 * \mathrm{~g}$ *

(b) Free-body diagram

Now we need to do the same for our friend:
$\tau_{\text {friend }}=60 * g *(3.0-x)$
In Equilibrium, $\tau_{\text {me }}+\tau_{\text {friend }}=0 \quad$ or $\quad \tau_{\text {me }}=-\tau_{\text {friend }}$

## Solution cont...

$$
\tau_{u s}=90 * g * x \quad \text { and } \quad \tau_{\text {friend }}=60 * g *(3.0-x)
$$

Lets use: $\boldsymbol{\tau}_{\text {us }}+\boldsymbol{\tau}_{\text {friend }}=\mathbf{0}$

Remember that anti-clockwise rotation is +VE:

$$
90 * g * x+-(60 * g *(3-x))=0
$$

Dividing both sides by ' $g$ ' gives:

$$
\begin{gathered}
90 x-(180-60 x)=0 \\
150 x-180=0 \\
x=180 / 150=1.2 \text { metres from the left end }
\end{gathered}
$$

# VTD Walking the plank 

VTD Off-Center Collision

VTD Balancing a meter stick

http://hyperphysics.phy-astr.gsu.edu/hbase/circ.html\#rotcon

## Linear Motion Rotational Motion

| Position $X$ | $\theta$ | Angular position |
| :---: | :---: | :---: |
| Velocity $v$ | $\omega$ | Angular velocity |
| Acceleration $\quad a$ | $\alpha$ | Angular acceleration |
| Motion equations $X=\bar{v} t$ | $\theta=\bar{\omega} t$ | Motion equations |
| $v=v_{0}+a t$ | $\omega=\omega_{0}+\alpha t$ |  |
| $x=v_{0} t+\frac{1}{2} a t^{2}$ | $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$ |  |
| $v^{2}=v_{0}^{2}+2 a x$ | $\omega^{2}=\omega_{0}^{2}+2 \alpha \theta$ |  |
| Mass (linear inertia) $m$ | $I$ | Moment of inertia |
| Newton's second law $F=m a$ | $\tau=I \alpha$ | Newton's second law |
| Momentum $\quad p=m v$ | $L=I \omega$ | Angular momentum |
| Work Fd | $\tau \theta$ | Work |
| Kinetic energy $\quad \frac{1}{2} m v^{2}$ | $\frac{1}{2} I \omega^{2}$ | Kinetic energy |
| Power Fv | $\tau \omega$ | Power |


| Linear |  |
| :--- | :--- |
| $\Delta \mathrm{x}$ | $\Delta \theta$ |
| v | $\omega$ |
| a | $\alpha$ |
| F | $\tau$ |
| m | I |
| p | L |

$$
\begin{array}{cc}
\tau=F l & \Sigma \tau=I \alpha \\
L=I \omega & \sum L_{i}=\sum L_{f}
\end{array}
$$

$$
W=\tau \Delta \theta
$$

$$
\boldsymbol{\Sigma} \boldsymbol{\tau}=\mathbf{0}
$$

What do all these equations mean? How did we use them?

Extra information and examples to try yourself, or do in class, if we have time

|  | TENTH EDITION College Physics <br> Young • Adams • Chast |
| :---: | :---: |
| - | Chapter 10: Dynamics of Rotational Motion |
| STUDY AREA | Home > Chapter 10: Dynamics of Rotational Motion > Chapter 10 Assets |
|  | Chapter 10 Assets |
| Chapter 10 | Video Tutor Demonstrations |
| Assets | Walking the plank |
|  | Spinning Person Drops Weights |
| Video Tutor | Off-Center Collision |
| Demonstrations | Balancing a Meter Stick |
|  | Conservation of Vector Angular Momentum |
| PhET | Conservation of Angular Momentum |
| Simulations | Video Tutor Solutions |
| eText | Example 10.1 A weekend plumber |
|  | Example 10.2 Unwinding a winch (again). |
|  | Example 10.3 Dynamics of a bucket in a well |
|  | Example 10.4 Dynamics of a primitive yo-yo |
|  | Example 10.5 A rolling bowling ball |
|  | Example 10.6 Work and power of an electric motor |
|  | Example 10.7 A kinetic sculpture |
|  | Example 10.8 Two rotating disks interacting |
|  | Example 10.9 Anyone can be a ballerina |
|  | Example 10.10 Angular momentum in a crime bust |
|  | Example 10.11 Playingon a seesaw |
|  | Example 10.12 Climbing a medieval ladder |
|  | Example 10.13 Equilibrium and pumping iron |
|  | Example 10.14 A laboratory gyroscope |
|  | Chapter 10 Bridging_Problem |
|  | PhET Simulations |
|  | Torque |

## Lever Arm

Torque on wrench $=$ Force $\times$ lever arm


- A counterclockwise force is designated as positive (+).
- A clockwise force is designated as negative (-).
$\overrightarrow{\boldsymbol{F}}_{1}$ tends to cause counterclockwise rotation about point $O$, so its torque is positive:

$\overrightarrow{\boldsymbol{F}}_{2}$ tends to cause clockwise rotation about point $O$, so its torque is negative: $\tau_{2}=-F_{2} l_{2}$


## The Yo-Yo Rotates on a Moving Axis

- Show this via mastering physics > VTS Ex 10.4
- Refer to worked example on page 334.

(a) The yo-yo

(b) Our free-body diagram


## JUST LINEAR

$\Sigma \mathrm{F}=\mathrm{Mg}-\mathrm{T}=\mathrm{Ma}$
(taking down as the positive direction)

## JUST ANGULAR

$$
\Sigma \tau=T R=l \alpha=\left(1 / 2 M R^{2}\right) \alpha
$$

## Combining linear and angular

In this question taking down as positive Velocity is through the center of mass

A Bowling Ball (Solid sphere) Rotates on a Moving Axis Ex10.5


$$
\begin{aligned}
& \sum F_{x}=M g \sin \beta-f_{s}=M a \\
& \sum \tau=f_{s} R=I \alpha=\left(\frac{2}{5} M R^{2}\right) \alpha
\end{aligned}
$$



## Example 2

A 2.00 kg stone is tied to a thin, light wire wrapped around the outer edge of the uniform 10.0 kg cylindrical pulley. The diameter of the pulley is 50.0 cm . The system is released from rest, and there is no friction at the axle of the pulley. Find
(a) the acceleration of the stone,
(b) the tension in the wire, and
(c) the angular acceleration of the pulley.

## JUST LINEAR BUCKET

$\mathrm{F}=\mathrm{mg}-\mathrm{T}=\mathrm{ma}$ (taking down as the positive direction)

## JUST ANGULAR WINCH

$$
\tau=\mathrm{FI}=\mathrm{TR}
$$

$\tau=\mid \alpha$
I= $1 / 2 \mathrm{MR}^{2}$
Gives
$\mathrm{TR}=1 / 2 \mathrm{MR}^{2} \alpha$
also
$a=R \alpha$
Sub into above equation and then divide through by $R$, $\mathrm{T}=1 / 2 \mathrm{Ma}$

## Combining linear and angular


(a) Diagram of situation

(b) Free-body diagrams

$$
\mathrm{mg}-1 / 2 \mathrm{Ma}=\mathrm{ma}
$$

$$
\mathrm{mg}-1 / 2 \mathrm{Ma}=\mathrm{ma} \quad \text { then leads to these equations }
$$

- Solving for a we get:

$$
\begin{equation*}
\mathrm{a}=\frac{g}{1+\frac{M}{2 m}} \tag{4}
\end{equation*}
$$

Using the fact that $\mathbf{a}$ is also = Ra, we solve for $\mathbf{\alpha}$ :

$$
\alpha=\frac{\frac{g}{R}}{1+\frac{M}{2 m}}
$$

Finally we can substitute Eq. 4 into $\mathbf{F}=\mathbf{m a}$ instead of a.

$$
\begin{equation*}
T=\frac{m g}{1+\frac{2 m}{M}} \tag{6}
\end{equation*}
$$

We Can Now Use These To Solve Our Problem............

- Linear Acceleration of Stone:

$$
\mathrm{a}=\frac{g}{1+\frac{M}{2 m}}(\text { from page } 300)(4)
$$

where $M$ is wheel mass, $m$ is stone mass.

$$
\mathrm{a}=\frac{10}{1+\frac{10}{2 * 2}}=\frac{10}{3.5}=2.86 \mathrm{~ms}^{-2}
$$

- Tension in wire:

$$
T=\frac{m g}{1+\frac{2 m}{M}}=\frac{2 * 10}{1+\frac{2 * 2}{10}}=14.29 \text { Newtons }
$$

This is less than $\mathbf{m g}$ as the stone accelerates downwards!!

## Solution continued...

- Angular acceleration of the pulley:

$$
\alpha=\frac{\frac{g}{R}}{1+\frac{M}{2 m}}=\frac{\frac{10}{0.34}}{1+\frac{10}{2 \times 2}}=\frac{29.41}{3.5}=8.40 \mathrm{rads}^{-2}(\text { From Page } 300)(5)
$$

The Radius of 0.34 comes from $\mathrm{R}=\left(\mathrm{R}_{1}{ }^{2}+\mathrm{R}_{2}{ }^{2}\right)$ for a partially hollow cylinder !!
We can also solve for final linear velocity, v:

$$
\text { We know: } v=\sqrt{2 a h}=\sqrt{\frac{2 g h}{1+\frac{M}{2 m}}}
$$

Now We Have A Full Set of Working Equations !!

## Angular momentum of a particle



A line joining a planet and the Sun sweeps out equal areas during equal intervals of time

Halley's
Comet visible from Earth every 7479 years.


## If at an angle

## $L=m(v \sin \phi) r$



What is the minimum tension needed to hold up the sign?


## Angular Quantities Are Vectors - <br> Figure 10.29

- The "right-hand rule" gives us a vector's direction.

Angular velocity and angular momentum: Curl the fingers of your right hand in the direction of rotation. Your thumb then points in the direction of angular velocity and momentum.


You must use your right hand!


Torque: Curl the fingers of your right hand in the direction the torque would cause the body to rotate. Your thumb points in the torque's direction.


Right-hand screws are threaded so that they move in the direction of the torque applied to them.


Other worked
examples in text book and self study area

