Chapter 6:

 Circular Motion and Gravitation

 Circular Motion and Gravitation}

SUMMARY

Note we do NOT do this in PHYS111

Radial acceleration

A ball whirls on a string attached to a rotating peg in the center of a frictionless table (viewed from above). Suddenly, the string breaks, releasing the radial force on the ball.
 straight at constant velocity.

Newton's Law of Gravitation

$$
F_{\mathrm{g}}=G \frac{m_{1} m_{2}}{r^{2}}
$$

$$
G=6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

$$
F_{\mathrm{g}(1 \text { on } 2)}=F_{\mathrm{g}(2 \text { on } 1)}
$$

Weight

- The weight of an object is the net gravitational force exerted on the object by all other objects in the universe
- Weight of an object near the surface of the earth is:

$$
m_{1} g=w=F_{\mathrm{g}, \text { earth surface }}=G \frac{m_{1} m_{\mathrm{E}}}{R_{\mathrm{E}}^{2}}
$$

- With this we find that the acceleration due to gravity near the earth's surface is:

$$
g=G \frac{m_{\mathrm{E}}}{R_{\mathrm{E}}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { at surface of Earth }
$$

