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Goals for Chapter 7

* Overview energy.

* Study work as defined in physics.

* Relate work to kinetic energy.

* Consider work done by a variable force.

 Study potential energy.

* Understand energy conservation.

* Include time and the relationship of work to power.
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Nuclear fusion heat record a ‘huge step’
in quest for new energy source

Oxfordshire scientists’ feat raises hopes of using reactions that
power sun for low-carbon energy

© The interior of the JET, where an experiment generated 59 megajoules of heat, beating the 1997
record of 21.7 megajoules. Photograph: UKAEA

The prospect of harnessing the power of the stars has moved a step closer to
reality after scientists set a new record for the amount of energy released in a
sustained fusion reaction.



Energy Essentials (1)

* Energy can take various forms (our focus is mechanical energy)

* Energy is a scalar quantity.
* The Sl unit of energy is the Joule (J).
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Mechanical Energy:

Kinetic Energy

Kinetic Energy

For a object of mass m and speed v, its kinetic energy is
1

K = —mv?
2

Example 1

A runner has a mass of 80.0 kg and a kinetic energy of 4.0 kJ.
What is her velocity?

Ans =10 m/s
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Internal Energy Can be "Lost" as Heat

* Atoms and molecules of a solid can be thought of as
particles vibration randomly on spring like bonds. This
vibration is an an example of internal energy.

* Energy can be dissipated by heat (motion transferred at the
molecular level). This is referred to as dissipation.
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At room temperature, Kinetic friction due to Friction has converted the
atoms vibrate small-scale surface kinetic energy of the sliding
moderately. roughness slows block. block to stronger atomic

vibrations (internal energy).
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Mechanical Energy:
Gravitational potential energy

Gravitational Potential Energy

For a object of mass m at vertical position y, its gravitational
potential energy is

Ug=mgy
Example 2

A 575 N woman climbs a staircase that rises at 53° above the
horizontal and is 4.75 m long. Assuming her speed to be
constant, find the change in her gravitational potential
energy.

Ans =2181J

13



S
751»/
=
3
c5

/y
Y4758
n §3°

U 9
3:<
: a4
—
t 7
2
fgf
j- 5
)
ng
30




Hydroelectric Dam

Long Distance

Powerhouse | Power Lines

x/’

T

Generator

15



A N s
by e B f =1 ,‘4.;{" 4
,—."‘rr(" b AR

R %

ol

2

16



Hooke’s Law

For an elastic spring, the applied
force F is proportional to the

extension/compression X.

F = kx
Elastic Potential Energy
When a force F stretches/compresses a spring by a distance
x from its equilibrium position, the elastic potential energy it
stores is

Mechanical Energy:

Elastic Potential Energy
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B Restoring force

S

Equilibrium position

Hooke’s Law: F = kx

Elastic Potential Energy: U, = %k;\c2

Example 3

To stretch a certain spring by 2.5 cm from its equilibrium
position requires 8.0 J of work.

(a) What is the force constant of this spring?

(b) What was the maximum force required to stretch it by
that distance?

a) k = 25600 N/m b) F =640 N
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WORK DONE

ENERGY TRANSFERRED




What is "Work" as Defined in Physics?

* Formally, work is the product of a constant force F through a parallel

disp
* Wor
disp

acements.

< is the product of the component of the force in the direction of

acement and the magnitude s of the displacement.

F
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Y
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Consider Only Parallel F and S — Figure 7.9

* Forces applied at angles must be resolved into components.

F| does no work on the car, ~ j————————--— P~

: : I F, does work
“»F, = Fsin¢ “

L
b A on the car.

 Wis a scalar quantity that can be positive, zero, or negative.
* If W>0(W<0), energy is added to (taken from) the system.

© 2016 Pearson Education, Ltd.



WORK = FORCE TIMES DISTANCE MOVED IN THE DIRECTION OF
THE FORCE

WORK = FORCE COMPONENT IN THE DIRECTION OF
MOTION TIMES THE DISTANCE

0 Is the angle between the two vectors

F has a component |F| cos 0 in the direction of s
SoW =|F| cos 6 |s|

Mathematically this is a dot product.
= Such that

0 W =F.s = |F| |s| cos 6

Two ways of looking at the same thing
(note the product of the two vectors is a scalar)
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Applications of Force and Resultant Work
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b The force has a component in the direction of displacement:
~==3% * The work on the object is positive. (The object speeds up.)
F, = Fcos¢ e W=Fis = (Fcosog)s
F F The force has a component opposite to the direction of displacement:
¢ » The work on the object is negative. (The object slows down.)
-=>» e+ W=Fis=(Fcosd)s
Fy = Fcos¢ » Mathematically, W < 0 because F cos ¢ is negative for 90° < ¢ < 270°.
The force is perpendicular to the direction of displacement:
o * The force does no work on the object.
£ * More generally, if a force acting on an object has a component F|
¢ perpendicular to the object’s displacement, that component does no
—-—=> work on the object.

© 2016 Pearson Education, Ltd.



Work

Work done by a CONSTANT force

If the angle between F and s

is ¢, then

W = F, s

W = (F cos¢) s
Example 5

Two tugboats pull a disabled supertanker. Each tug exerts a
force of 1.80%x10€ N, one 14° west of north and the other 14°
east of north, as they pull the tanker 0.75 km towards the
north. What is the total work done on the tanker?
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Example

A tennis player hits a 58.0 g tennis ball so that it goes straight up and
reaches a maximum height of 6.17 m.

(a) How much work does gravity do on the ball on the way up?

(b) On the way down?

ANS a) -3.51



7.2. Set Up: Use W = Fs=(Fcos@)s. On the way up, the displacement is upward and the gravity force is

downward, so ¢=180". On the way down, both the displacement and force are downward, so ¢ = 0°.
Solve: On the way up: W = (mgcos180°)s = (5.80 x 107> kg)(9.80 m/s” )(cos180°)(6.17 m) = —3.51J

On the way down: W = (mgcos0°)s = (5.80 x 1072 kg)(9.80 m/s”)(cos0°)(6.17 m) = 3.51 ]
Reflect: When the force and displacement are in opposite directions, the work done is negative,
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7.2 Work

1. A fisherman reels in 12.0 m of line while landing a fish,
using a constant forward pull of 25.0 N. How much work does
the tension in the line do on the fish?

&ff \%> >

=
3. ® A boat with a horizontal tow rope pulls a water skier. She
skis off to the side, so the rope makes an angle of 15.0° with
the forward direction of motion. If the tension in the rope is
180 N, how much work does the rope do on the skier during a
forward displacement of 300.0 m?

W= F ¢ wn &

ANS 1) 300) 3)5.22 x 10%)
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7.1. Set Up: Assume the fisherman is holding the pole straight out in front of him so that the pole and fishing line
are roughly parallel to the water. Thus @ = 0% may be used in the relation W = Fs = (F cos@)s.

Solve: W = Fus = (Fceosg)s =[(25.0 N)(cos07)](12.0 m) =300 J
Reflect: Because ¢ =07, all of the force that the fisherman applies through the line 1s used to perform work on the
fish.

*7.3. Set Up: Use W= Fs=(Fcos¢)s with ¢ =15.0°,

Solve: W = (Fcos@)s = (180 N}(cosl5.0°0300.0 m)=5.22 x 10ty
Reflect: Since cosl5.0° = 0.97, the relatively small angle of 15.0° allows the boat to apply approximately 97% of
the 180 N force to pulling the skier.
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Work done by a variable force

Force changes Fi x i,
from F; to F; over the _ > T
displacement = — X
x; to xy. X Xy
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Work done by a variable force

Work done by F to

Stretching an elastic spring stretch spring

The F-x graph is a straight F‘x \

line (Hooke’s law).
F = kx

The work done by the
stretching force is still the
area under the curve.

WD—lk2
_Zx
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Another example

*An unstretched spring is 17.0 cm long. When a force of 25.0 N
stretches it, its length increases to 19.2 cm.

(a) What is the force or spring constant (k) ?

(b) How much work was required to stretch the spring from 17.0 cm to
19.2 cm?

ANS a) 1136 N/m b) 0.275 J
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Energy Essentials (2)

Conservation of Mechanical Energy

The TOTAL mechanical energy in an ISOLATED SYSTEM
remains CONSTANT (conserved) no matter what happens
in the system.

Initial total mech.energy = final total mech. energy
Ei — Ef
Ki+ Ugi+ Uei — Kf+ Ugf+U8f
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Dissipation of mechanical energy

- When dissipative forces act on a system, mechanical
energy is no longer conserved.

- Dissipative force “waste’” mechanical energy as internal
energy.

« Friction and air drag (resistance) are examples of
dissipative forces.

 In this case TOTAL ENERGY IS CONSERVED.
 Initial TOTAL energy = Final TOTAL energy

2LE = ) Ef
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VTD Chin Basher?

VTD Work and Kinetic energy.

PhET The ramp



By conservation of energy:

PE =m g h Energy before = Energy after
KE = I T
_@KE=0  eh = —my
The beginning The fingl
energy is all The M1 on both sides | | energy is all
potential energy. tells you that the final kinetic energy.
h velocity doesn't depend
upon the mass.
The velocity just before impactis V = /2 gh
oo I 2
L) KE= Emv
TV
PE=0

2E; =X Ef

39



Conservation of MECH. Energy

*Example (based on problem 42)

*If air drag is negligibly small, how fast is a 100-g sequoia cone moving
when it reaches the ground if it dropped from the top of a 100 m tree?

ANS 44.3 m/s YE =Y Ef
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Dissipation of mechanical energy

*Example (based on problem 42)

*How fast is a 100-g sequoia cone moving when it reaches the ground if
it dropped from the top of a 100 m tree? Air drag takes away 22 J of
energy as the cone falls the 100 m.

ANS 39.0 m/s YL E =Y Ef
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Potential Energy on an Air Track with Mass and Spring

e Refer to Example 7.8.

* Knowing the initial state of our _-=Spring relaxed

system and thus the total

/
J

Y
_ _ k=500N/m x=0
mechanical energy, we use this \V Vi =0

M o

to find the final state at any x;=0.100 m

|
|
|
L L : —
position. Thitial WWMAMAMN/// m =0.200 kg
, %
|
|
|
|

. : 0
e Using conservation of total
mechanical energy:

X =0.0300 m
Y

s e W e

X

Final l >X

K,+U, =K, +U, °

1 2 - 1.2 1 2 . 17.2

VISEx 7.8
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Work-energy theorem Whet = AKE

Work-Energy Principle

2

_ 1 2 1
Wiet =3 M 5> MVinitial

net Ufinal ) 2
The change in the Kinetic energy of
an object is equal to the net work
done on the object.



Work-energy theorem Whet = AKE

*Example
*A 1.2x103-kg car accelerates from 20.0 m/s to 24.0 m/s

*(a) Assuming (!) no significant energy losses, find the work done by the
engine.

*(b) It was found that friction and air drag cause an energy loss of 24 kJ.
What was the actual (total) work done by the engine if the same car
still accelerates from 20.0 m/s to 24.0 m/s.

ANS a) 105600



[w= Ak

mo 120’ Ky o

(@)
W= Ake
= Lo (v
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V;.': 2#‘:9:-/5 7
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B Egie b b overcone P

wm&hj‘hwﬂwwi

W= 108600 + 24,00V
= 124600 J
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e A bullet is fired into a large stationary absorber and comes
to rest. Temperature measurements of the absorber show that
the bullet lost 1960 J of kinetic energy, and high-speed photos
of the bullet show that it was moving at 965 m/s just as it
struck the absorber. What is the mass of the bullet?



*7.13. Set Up: Use K =—£mt)2 and solve for m.

Solve: m = 2K/ v = 2(1960 I)/(965 :11.!’5.]2 =421x10""° kg=421¢g
Reflect: The kinetic energy of an object 1s proportional to the mass of the object.
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The LHC uses calorimeters to measure the energy loss of particles




7.4 Work Done by a Varying Force

25. ® To stretch a certain spring by 2.5 ¢cm from its equilibrium
position requires 8.0 J of work. (a) What is the force constant
of this spring? (b) What was the maximum force required to
stretch it by that distance?

51



*7.25. Set Up: Use W

on spring = + ékxz in part (a) and F, = kx in part (b).

1 Spring

jl’wﬂn spring} _ 2(8.0 1)

35— = ~=2.6x10"N/m.
x (0.025 m)*

Solve: (a) k=




Power

Power is the rate of doing work.

p w
Average power av — .
At

Example

A car uses 6000 J of energy in 9.1 s. Calculate the average
power developed by its engine.



Power — Considers Work and Time to do It

* When a quantity of work AW is done during a time interval At,
the average power P_, or work per unit time is:

wa:A—W
‘ At

* Units of watt [W], or 1 watt = 1 joule per second [J/s]

* The rate at which work is done is not always constant. When it
varies, we define the instantaneous power P as:

AW
P:Iim—ZF”U

At—0 At

W Fs
P=—=—=Fv

t t



Power — Considers Work and Time to do It

* Example 7.16: A marathon
stair climb

* If the runner is initially at rest
and ends at rest, thework [ © o
done by the runneris equalto
the work done by gravity on I

< | N N
the runt _ ~ N
‘/Vrun.ner = g h ﬁj/é//
* The average power output by P

th eru %% mg h /’5/4/ 7 . ///'/ B

— runner __ S _
})av T - / é/}f/ ’J‘ > ~
At At .

=Fv,, = mgv,,




1.8 Power

Use answer from (a)

63. ® (a) How many joules of energy does a 100 watt lightbulb

64.

Usc CvVery

hour”!

b)

ow fast would a 70 kg person have to run

to have |lhat amount

pf kinetic energy? Is it possible for a per-

son to run that fast? (¢c) How high a tree would a 70 kg person
have to climb to increase his gravitational potential energy rela-
tive to the ground by |thal: amount? Are there any trees that tall?
® The engine of a motorboat delivers 30.0 kW to the propeller
while the boat is moving at 15.0 m/s. What would be the ten-
sion in the towline 1f the boat were being towed at the same

speed’
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*7.63. Set Up: For part (a) use P=5.E to solve for W, the energy the bulb uses. Then set this value equal to
t

%mvz for part (b), and solve for the speed. In part (c), equate the W from part (a) to Uy = mgh and solve for the

height.
Solve: (a) W =P Ar=(100 W)(3600 5)=3.6x10°]

3
(b) K=3.6x10°T so v= - = [2GOXI0D 100 1
m 70 kg

. Uy 3.6%10°]
(€) Uprgy =3.6%10°J s0 h=—"= =520 m

mg (70 kg)(9.80 m/'s>)

Reflect: (b) Olympic runners achieve speeds up to approximately 36 mv/s, or roughly one = third the result calculated.
(¢) The tallest tree on record, a redwood, stands 364 ft or 110 m, or 4.7 times smaller than the result.

7.64. Set Up: Use the relation P= Fv to relate the givien power and velocity to the force required. Recall that a

watt represents the rate of energy—a joule per second.
Solve: The force required is thus F = (30.0x 107 1/s)/ (150 m/s)=2.00 % 107 N.

Fastest human 45 km/hr = 12.5 m/s
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The Chain of Mechanical Quantities

Restrictions, qualifications
With direction, displacement

over time gives average
velocity.

Change in velocity over time

gives average acceleration

Actually gives net external

force if mass is constant.

Force x length in direction of

force, if these quantities constant.

Note: Power is measured in Watts or kg

m2

s3

Average power
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Development of
mechanical units  gives | Vhen multiplied MIL2

which with
direction becomes

Acceleration

by mass Power | —

Unit Unit
Table Conversion

Dlscussuon

ML

Torque T2

J rate of
doing work
rate of | using
i energy

leverarm  times distance

moved ML2
........... ............... Energy Al
Same combination of units Srabied T2
but completely different by

quantities.
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Use the textbook
for more details

VTD Chin
Basher?

VISEx 7.1

PhET The ramp
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PhET Simulations

The Ramp

32



Appendix

Extra info
More examples

Use textlbook for more information



SUMMARY

Overview of Energy

(Section 7.1) Energy is one of the most important unifying concepts
in all of physical science. Its importance stems from the principle of
conservation of energy. Energy is exchanged and transformed dur-
ing interactions of systems, but the total energy in a closed system 1s
constant. This chapter 1s concerned with mechanical energy of three
types: kinetic energy, associated with the motion of objects that
have mass; gravitational potential energy, associated with gravita-
tional interactions; and elastic potential energy, associated with
elastic deformations of objects. Potential energy can be viewed as a
stored quantity that represents the potential for doing work.
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Work

(Section 7.2) When a force acts on an object that undergoes a dis-
placement, the force does work on the object and transfers energy
to it. For a constant force, W = Fs (Equation 7.1), where F| is the
component of force parallel to the object’s displacement (of mag-
nitude 5). This component can be positive, negative, or zero. Work
is a scalar quantity, not a vector. If F, points opposite to the dis-
placement, then W << 0. When several forces act on an object, the
total work done by all the forces 1s the sum of the amounts of work
done by the individual forces.

Work done by a single force: Work done by
W = Fs = (Fcosd)s multiple fﬂrLc"-r
W =W, +W
W =0 W< 0 okl
F, E
¢
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Work and Kinetic Energy

(Section 7.3) The kinetic energy K of an object is defined in terms of
the object’s mass m and speed v as K = smuv’. When forces act on
an object, the change 1n its kinetic energy 1s equal to the total work
done by all the forces acting on it: W, , = K; — K = AK
(Equation 7.4). When W is positive, the object speeds up; when W
1s negative, it slows down.

Honda, mass 1300 kg Mercedes, mass 2600 kg

K = 3mv* = 2600 K =3mv® = 1300)
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Work Done by a Varying Force

(Section 7.4) When an object moves under the action of a varying
force parallel to the displacement, the work done by the force is
represented graphically as the area under a graph of the force as a
function of displacement. If the magnitude of force F required to
stretch a spring a distance x beyond its natural length is propor-
tional to x, then F = kx, where k is a constant for the spring, called
its force constant or spring constant. The total work W needed to
stretch the spring from x = 0to x = X is W = JkX~.

Area
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Potential Energy

(Section 7.5) Potential energy can be thought of as stored energy.
For an object with mass m at a height v above a chosen origin
(where y = 0), the gravitational potential energy is U, = mgy
(Equation 7.9). When a spring is stretched or compressed a dis-
tance x from its uncompressed length, the spring stores elastic
potential energy U, = 1kx? (Equation 7.13). Potential energy is
assoclated only with conservative forces, not with nonconservative
forces such as friction.

¥
m t,.'_briil'lm'_i = MgY;
i | .

. mg‘ m"mm ANV

r _ I B
LI’H_'_ mgyy T
: ./ ¥1TI [ T
Ve R

Gravitational potential energy: Elastic potential energy: For a
For an object at vertical position v,  spring stretched or compressed
by a distance x from equilibrium,

r — .
Ugpay = Mg)
: ; ” T .
For a change in vertical position, Ug = 5 ka
/ T - T o r
il"";i"gr'.un - '{"gr'.u'.t" 'r-"gr'.u'.i
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Conservation of Energy

(Sections 7.6 and 7.7) When only conservative forces act on an
object, the total mechanical energy (kinetic plus potential) is
constant; that is, K, + U, = K; + U, where U may include both
gravitational and elastic potential energies. If some of the forces
are nonconservative, we label their work as W,,... The change in
total energy (kinetic plus potential) of an object during any
motion is equal to the work W, . done by the nonconservative
forces: K, + U, + W,... = K; + U; (Equation 7.16). Nonconserva-
tive forces include friction forces, which usually act to decrease

the total mechanical energy of a system. )
E 3 | F Uy

vp = 00 T

h

il KE
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Power

(Section 7.8) Power is the time rate of doing work or the rate at
which energy is transferred or transformed. For mechanical sys-
tems, power is the time rate at which work is done by or on an
object or a system. When an amount of work AW 1s done during a
time interval Ar, the average poweris P,, = % (Equation 7.17).
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Sliding on a Ramp — Example 7.2

S

E
7

\@ mass m

fY
F') -
§
~
S ,
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v \Vl W=mg
(a) Sketch of situation (b) Free-body diagram of package
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The work done by the
gravitational force 1s the
same for all three paths,
because this force is
conservative.

%

.

Conservative

Final
position
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Problems With Nonconservative Forces

* This is the same problem as Example 7.8, but now we also
include the work done an external, a nonconservative force F.

* In addition to the

: . VIS Ex 7.12
spring force, there is
X: =0
a constant force F A
o, o (
along the positive Thitial W /|—>F=0610N
x-direction. ol : >X
' |
|
| 4 X = 0100 m
| : e
| \/f‘
W, =(K,+U;) - (K; +U | =z
1f ( fl f) (1 )1 Ettral Wwvmv% —>X>f:
Wi :(7muf2 "'7]961‘2)‘(?”7”5 +§kxi2) O,

where W, =Fx>0



12. o [t takes L_ngﬁ.l J}F energy to raise the temperature of 1.0 g of
water hyﬁﬁﬁﬁw fast would a 2.0 g cricket have to jump

to have th: ‘h kinetic energy? (b) How fast would a 4.0 g
cricket have to jump to have the same amount of kinetic energy”’

7.12. Set Up: Use K = Emul to calculate v, where K is equal to the change in thermal energy.

Solve: (a) v =2K/m =+/2(4.186 1)/(2.0x10 *kg) = 65 m/s

(b) U=+/2(4.186 1)/(4.0x10 > kg) = 46 m/s
Reflect: When the mass increases by a factor of two, the speed required decreases by a factor of 1/ J2.
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