
### **Newton's Laws RECAP ONLY**

This is a **recap** of the self study program that you have done on Newtons laws.







# Newtons laws **self-study program.**Do the following

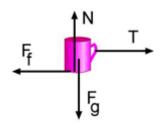
- Watch the two videos on Newtons laws (chapters 4 & 5) and make notes on these.
- Study the two PowerPoints on Newtons laws (chapters 4 & 5)
- Study Mastering physics (if available)
- Test yourself on some of the 723 questions on Newtons laws.

#### Newton's first law

Every object continues either at rest or in constant motion in a straight line, unless it is forced to change that state by forces acting on it.

#### **Newton's Second Law**

 The net force acting on an object is equal to its mass times its acceleration


Vector form

$$\Sigma \vec{F} = m\vec{a}$$

Component form

$$\Sigma F_x = ma_x$$
  $\Sigma F_y = ma_y$ 

1. 
$$\Sigma \vec{F} = 0$$
  
2  $\Sigma \vec{F} = m\vec{a}$   
3  $\vec{F}_{AB} = -\vec{F}_{BA}$ 



#### Newton's First Law: Vector form

$$\sum \vec{F} = 0 \qquad \vec{a} = 0$$

$$\Delta \vec{v} = 0$$

$$\vec{v} = constant$$

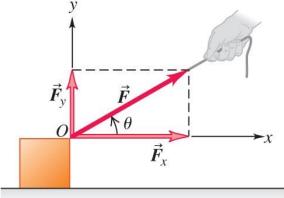
#### **Newton's third law**

 For every action (force) there is a reaction (force) equal in magnitude and opposite in direction.

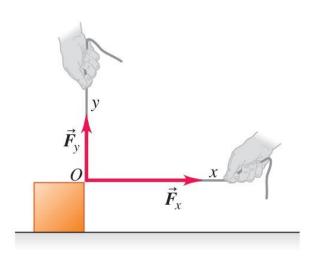
$$\vec{F}_{AonB} = -\vec{F}_{BonA}$$
 $\vec{F}_{AB} = -\vec{F}_{BA}$ 

 Forces always act in pairs (of action and reaction)

# A Force May Be Resolved Into Components


© 2016 Pearson Education, Ltd.

 $E = E \circ \circ O$ 


$$F_x = F \cos \theta$$

$$F_{y} = F \sin \theta$$

 The x- and y-coordinate axes don't have to be vertical and horizo



(a) Component vectors:  $\vec{F}_x$  and  $\vec{F}_y$ Components:  $F_x = F \cos \theta$  and  $F_y = F \sin \theta$ 

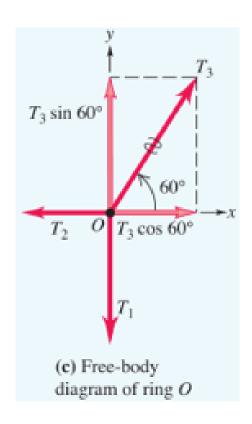


(b) Component vectors  $\vec{F}_x$  and  $\vec{F}_y$  together have the same effect as original force  $\vec{F}$ .

#### Inertia

- Every object has inertia; the tendency of a body to resist change in motion.
- The mass of the body is a measure of its inertia.
- Newton's 1<sup>st</sup> law is also known as the law of inertia.

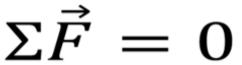


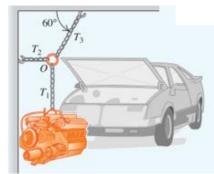

Most large tankers turn off their engines about 15 miles (25 km) away from their stop point

## Mass and Weight

- Weight is the gravitational force acting on a mass.
- The gravitational acceleration **g** is assumed constant near the surface of the Earth (unless otherwise is stated)
- g varies from a planet to another, so weight changes, but mass does not change.

$$W = mg$$



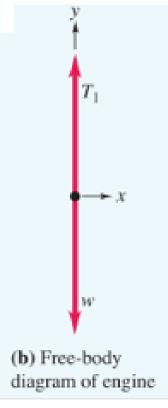






$$\sum F_{x} = 0 = T_{3}\cos(60) - T_{2}$$

$$\sum F_{y} = 0 = T_{3}\sin(60) - T_{1}$$



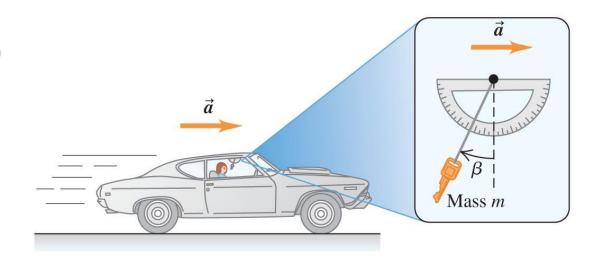



No net force acting on the object.

Draw a free body diagram for the O ring. Since the net force is zero write two equations.

Realize you have 3 unknowns. You need another equation from the free body diagram of the engine.

Solve the equations.






$$\sum F = 0 = T_1 - 224 \times 9.8$$

• This experiment works in your car, a bus, or even an amusement park ride!

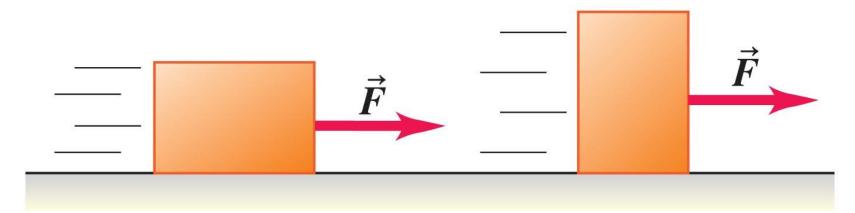
VTS EX 5.5



(a) Low-tech accelerometer

**(b)** Free-body diagram for the key

 $T \sin \beta$ 


$$\sum F_{x} = ma_{x}, \quad T \sin \beta = ma_{x}$$

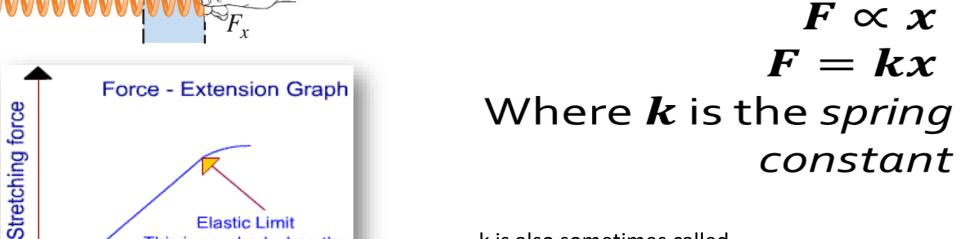
$$\sum F_{y} = 0, \quad T \cos \beta + (-mg) = 0$$

$$a_{x} = g \tan \beta$$

## No Dependence on Surface Area

The normal force determines friction.




$$f_s \le \mu_s n \longrightarrow \text{no relative movement}$$
 $f_{s,\text{max}} = \mu_s n \longrightarrow \text{interface "breaks loose"}$ 
 $f_k = \mu_k n \longrightarrow \text{sliding with friction}$ 

### Hooke's Law 5.4 Elastic forces

This is reached when the graph line starts to curve

Extension

For an elastic spring, the applied force F is proportional to the extension/compression x.



k is also sometimes called the force constant

## Tutorial now.

## Try questions