Chapter 2

Motion in a straight line

Learning Outcomes Ch 2

- I can calculate the average velocity.
- I can find the instantaneous velocity at a particular point.
- I can calculate the average acceleration.
- I can find the instantaneous acceleration at a particular point.
- I can understand and interpret distance-time graphs and velocity-time graphs.
-I can use the equations of motions to solve motion problems
-I understand what free fall is and what assumptions have been made.

Motion

- Motion is divided into two areas of study:
- Kinematics
- This will be our focus in Chapter 2 (1-dimension). [2-D in Chapter 3]
- Kinematics describes the movement of the object.
- Dynamics
- Will come in Chapter 4 and after
- Dynamics answers the "Why is this object moving?" question.

2.2 Displacement and Average Velocity: "Are we there yet?"

- Displacement, the distance from *here* to *there* \rightarrow a vector quantity

$$
\Delta x=x_{2}-x_{1}
$$

- Units
- SI: Meters (m), CGS: Centimeters (cm), US Cust: Feet (ft)
- Average velocity \rightarrow a vector quantity
- Stop, speed up, slow down
- Focus on total time and total displacement

$$
v_{a v, x}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t} \quad \text { Units: } m / s
$$

Average Velocity

$$
v_{a v, x}=\frac{277 \mathrm{~m}-19 \mathrm{~m}}{4.0 \mathrm{~s}-1.0 \mathrm{~s}}=86 \mathrm{~m} / \mathrm{s}
$$

Average Velocity

- A vehicle travels from Abu Dhabi to Dubai. The vehicle leaves Abu Dhabi at 9.45am and arrives in Dubai at 11.20 am . The distance from Abu Dhabi to Dubai is said to be 135 km . Calculate the average velocity of the car during this journey.
(in m/s)
- We know that:

$$
V_{\text {average }}=\text { Change in Distance / Change in Time }=\frac{\Delta x}{\Delta t}
$$

Firstly, we need both the time and distance in SI units.....

Example Solution

Firstly, we need both the time and distance in SI units..... Time is 9.45 am until 11.20 am , which is 1 hour and 35 mins . Well, 1 hour 35 mins $=95 \mathrm{mins}$. As there are 60 seconds in a minute we multiply this out.

$$
95 * 60=5,700 \text { seconds. }
$$

The distance is 135 km . Well there are 1000 m in 1 km , so there must be 135 * 1000 metres in 135 km , which gives the distance as 135,000 metres.

$$
\text { We know Ave. Velocity }=\frac{\Delta x}{\Delta t}
$$

$$
\text { So, Ave, Velocity }=\frac{\mathbf{1 3 5 0 0 0}}{\mathbf{5 7 0 0}}=23.68 \mathrm{~ms}^{-1}
$$

2.1 Displacement and Average Velocity

1. - An ant is crawling along a straight wire, which we shall call the x axis, from A to B to C to D (which overlaps A), as shown in Figure 2.39. O is the origin. Suppose you take measurements and find that $A B$ is $50 \mathrm{~cm}, B C$ is 30 cm , and $A O$ is 5 cm . (a) What is the ant's position at points A, B, C, and D ? (b) Find the displacement of the ant and the distance it has moved over each of the following intervals: (i) from A to B, (ii) from B to C, (iii) from C to D, and (iv) from A to D.

Position
A
B
C
D

Displacement
A-B
B-C
C-D
A-D

2.2 Instantaneous Velocity

Interpretation of Motion via Graphing

Instantaneous Velocity

x

8. \bullet Each graph in Figure 2.45 shows the position of a running cat, called Mousie, as a function of time. In each case, sketch a clear qualitative (no numbers) graph of Mousie's velocity as a function of time.

$$
v_{a v, x}=\frac{\Delta x}{\Delta t}
$$

(a)

(b)

(c)
2.8. Set Up: $v_{x}(t)$ is the slope of the x versus t graph. In each case this slope is constant, so v_{x} is constant. Solve: The graphs of v_{x} versus t are sketched in the figure below.

v_{x} constant and positive
(a)

v_{x} zero (b)

v_{x} constant and negative
(c)
20.

- A test car travels in a straight line along the x axis. The graph in Figure 2.47 shows the car's position x as a function of time. Find its instantaneous velocity at points A through G.

2.20. Set Up: The instantaneous velocity at any point is the slope of the x versus t graph at that point. Estimate the slope from the graph.
Solve: $A: v_{x}=6.7 \mathrm{~m} / \mathrm{s} ; B: v_{x}=6.7 \mathrm{~m} / \mathrm{s} ; C: v_{x}=0 ; D: v_{x}=-40.0 \mathrm{~m} / \mathrm{s} ; E: v_{x}=-40.0 \mathrm{~m} / \mathrm{s} ; F: v_{x}=-40.0 \mathrm{~m} / \mathrm{s} ; G: v_{x}=0$.
Reflect: The sign of v_{x} shows the direction the car is moving. v_{x} is constant when x versus t is a straight line.

Instantaneous speed camera

average speed camera

2.3 Acceleration

- Acceleration is the rate of change in velocity.
- Average Acceleration

$$
a_{a v, x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \quad \begin{gathered}
\text { Slope between } \\
\text { two points }
\end{gathered}
$$

- Instantaneous acceleration

$$
a_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}
$$

- Acceleration is the slope of v - graph

Acceleration from a Velocity vs Time Plot

- Average acceleration \rightarrow slope between two points
- Instantaneous acceleration \rightarrow line tangent at point

From

Hyperphysics
 site

22. * The graph in Figure 2.49 shows the velocity of a motorcycle police officer plotted as a function of time. Find the instantaneous acceleration at times $t=3 \mathrm{~s}$, at $t=7 \mathrm{~s}$, and at $t=11 \mathrm{~s}$.

Acceleration is the slope of a v-t graph

A FIGURE 2.49 Problem 22.
25. e For each graph of velocity as a function of time in Figure 2.50 , sketch a qualitative graph of the acceleration as a function of time.

(a)

(b)

(c)

(d)

A FIGURE 2.50 Problem 25.
2.22. Set Up: The instantaneous acceleration is the slope of the v_{x} versus t graph.

Solve: $t=3 \mathrm{~s}$: The graph is horizontal, so $a_{x}=0$.
$t=7 \mathrm{~s}$: The graph is a straight line with slope $\frac{44 \mathrm{~m} / \mathrm{s}-20 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}}=6.0 \mathrm{~m} / \mathrm{s}^{2} ; a_{x}=6.0 \mathrm{~m} / \mathrm{s}^{2}$.
$t=11 \mathrm{~s}$: The graph is a straight line with slope $\frac{0-44 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}}=-11 \mathrm{~m} / \mathrm{s}^{2} ; a_{x}=-11 \mathrm{~m} / \mathrm{s}^{2}$.
*2.25. Set Up: The acceleration a_{x} equals the slope of the v_{x} versus t curve.
Solve: The qualitative graphs of acceleration as a function of time are given in the figure below.

(a)

(b)

(c)

(d)

The acceleration can be described as follows: (a) positive and constant, (b) positive and increasing, (c) negative and constant, (d) positive and decreasing.
Reflect: When \boldsymbol{v}_{x} and a_{x} have the same sign then the speed is increasing. In (c) the velocity and acceleration have opposite signs and the speed is decreasing.

Motion in Pictures and Graph

2.4 Motion with constant acceleration

Equations of motion for constant acceleration

$\mathrm{v}=$ velocity.
$\mathrm{v}_{\mathrm{o}}=$ velocity at $\mathrm{t}=\mathrm{o}$
$\mathrm{a}=$ acceleration
$\mathrm{t}=$ time
$\Delta=$ 'change in'

Example 1

VTS Ex 2.5

A car initially traveling along a straight stretch of highway at $15 \mathrm{~m} / \mathrm{s}$ accelerates with a constant acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ in order to overtake a slower truck. (a) What is the velocity of the car after 5.0 s ?

```
1}v=\mp@subsup{v}{0}{}+a
2 \Delta x = ( \frac { v _ { 0 } + v } { 2 } ) t
    \Deltax=\mp@subsup{v}{0}{}t+\frac{1}{2}a\mp@subsup{t}{}{2}
v ^ { 2 } = v _ { 0 } ^ { 2 } + 2 a \Delta x
    \Deltax=vt-\frac{1}{2}a\mp@subsup{t}{}{2}
```


Example 1

(b) Sketch a velocity-time graph for these five seconds.

Example 1

(c) Sketch an acceleration time graph for the same time interval.

Example 1

VTS Ex 2.6

(d) How far did the car travel during this interval?

$$
\begin{array}{cc}
\mathbf{1} & v=v_{0}+a t \\
\mathbf{2} & \Delta x=\left(\frac{v_{0}+v}{2}\right) t \\
\mathbf{3} & \Delta x=v_{0} t+\frac{1}{2} a t^{2} \\
\mathbf{4} & v^{2}=v_{0}^{2}+2 a \Delta x \\
\mathbf{5} & \Delta x=v t-\frac{1}{2} a t^{2}
\end{array}
$$

(1) $\quad V_{0}=15 \mathrm{~m} / \mathrm{s}$

$$
a=2.0 \mathrm{~m} / \mathrm{s}^{2}
$$

(a) $V=v_{0}+a t=15+2.0(5)=25 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& 15 \underbrace{25}_{0} \\
& \operatorname{ta}^{5} \\
& \alpha \\
& \Delta_{x}^{\alpha}=\left(\frac{v_{0}+v}{2}\right) t \\
& =\left(\frac{15+25}{2}\right) 5 \\
& =100 \mathrm{~m}
\end{aligned}
$$

Example 2

A car approaches a traffic signal at $20 \mathrm{~m} / \mathrm{s}$. The signal turns red and the driver applies the brakes causing the car to stop just before the signal line in 5.0 s .
(a) Calculate the acceleration of the car.
(b) How far was the car from the signal line when the driver started applying the brakes?
(c) Sketch a v-t and an a-t graph.

$$
\begin{array}{cc}
v=v_{0}+a t & \Delta x=\left(\frac{v_{0}+v}{2}\right) t \\
\Delta x=v_{0} t+\frac{1}{2} a t^{2} & v^{2}=v_{0}{ }^{2}+2 a \Delta x \\
\Delta x= & v t-\frac{1}{2} a t^{2}
\end{array}
$$

A car approaches a traffic signal at $20 \mathrm{~m} / \mathrm{s}$. The signal turns red and the driver applies the brakes causing the car to stop just before the signal line in 5.0 s .
a) Calculate the acceleration of the car.
(b) How far was the car from the signal line when the driver started applying the brakes?
(c) Sketch a v-t and an a-t graph

```
v=\mp@subsup{v}{0}{}+at 
|x=\mp@subsup{v}{0}{}t+\frac{1}{2}a\mp@subsup{t}{}{2}
    \Deltax=vt-\frac{1}{2}a\mp@subsup{t}{}{2}
```

(2)

$$
\begin{aligned}
& V_{0}=20 \mathrm{~m} / \mathrm{s} \\
& V=0 \mathrm{~m} / \mathrm{s} \\
& t=5.0 \mathrm{~s}
\end{aligned}
$$

(c)

(a) $v=v_{0}+a t$

$$
a=\frac{V-V_{0}}{t}=\frac{0-20}{5}=-4 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) $\Delta x=\left(\frac{v_{0}+v}{2}\right) t=\left(\frac{20+0}{2}\right) 5=50 m$
(d) Acceleration is constat

Example 3

A ball thrown horizontally hits a vertical wall at $4.8 \mathrm{~m} / \mathrm{s}$ and rebounds at $3.6 \mathrm{~m} / \mathrm{s}$. It remains in contact with the wall for 280 ms .
(a) Sketch the ball's v-t graph.
(b) From your graph, find the acceleration of the ball during contact with the wall.
(3)

$$
\begin{aligned}
& V_{0}=4.8 \mathrm{~m} / \mathrm{s} \longrightarrow+v e \\
& V=-3.6 \mathrm{~m} / \mathrm{s} \\
& t=280 \times 10^{-3} \mathrm{~s}
\end{aligned}
$$

(a)

(b)

$$
\begin{aligned}
a & =\frac{c-3.6-4.8}{280 \times 10^{-3}} \\
& =-30 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

At time T, what is true of the distances travelled by the vehicles since time $t=0$?
A) They will have travelled the same distance.
B) The truck will not have moved.
C) The car will have travelled further than the truck.
D) The truck will have travelled further than the car.
A_{1} The answer is D . The distance traveled is the area under a v - t curve

2.6 Free Fall: Does weight matter?

Does a falling elephant or a falling feather reach the ground first?

"Thank You Galileo"

- As the story has it, he dropped objects from the Leaning Tower of Pisa; one heavy, one light. They hit simultaneously, disproving Aristotle's assertion that heavier objects fall faster.
- A feather and a hammer falling on the moon during the Apollo 15 mission by astronaut Dave Scott.
- The key is that Galileo is right for motion in the absence of air resistance.

Free Fall: Does weight matter?

Hammer and feather (Apollo 15)
http://www.youtube.com/watch?v= KDp1tiUsZw8

Assumptions
No air resistance
a) \equiv air resistance is negligible
b) \equiv the objects moves only under the effect of gravity
2. the gravitational field strength is constant
a) $\equiv g \cong 9.8 \mathrm{~ms}^{-2}$
b) \equiv the object is close to the surface of the earth

Free Fall: Illustration

A tennis serving machine is directed vertically upwards and shoots a ball at $30 \mathrm{~m} / \mathrm{s}$.
For the time interval taken by the ball to return to the same initial height, sketch its
(a) acceleration-time graph,
(b) velocity-time graph, and
(c) position-time graph

Free Fall: important pointers

- The acceleration at every position is $\boldsymbol{g} \cong 9.8 \mathrm{~m} \mathrm{~s}^{-2}$ downwards
- The velocity at the highest position is zero.
- If the object is initially going upwards:
- The time taken to reach maximum height is the same as the time taken to return to launch position.
- The velocity has the same magnitude at the same height when going up and down.

You throw a ball vertically upward from the flat roof of a tall building. The ball leaves your hand at a point even with the roof railing, with an upward velocity of $15.0 \mathrm{~m} / \mathrm{s}$. On its way back down, it just misses the railing. Find
(a) the position and velocity of the ball 1.00 s and 4.00 s after it leaves your hand;
(b) the velocity of the ball when it is 5.00 m above the railing; and
(c) the maximum height reached and the time at which it is reached. Ignore the effects of the air.

$$
\begin{array}{lc}
v=v_{0}+a t & \Delta x=\left(\frac{v_{0}+v}{2}\right) t \\
\Delta x=v_{0} t+\frac{1}{2} a t^{2} & v^{2}=v_{0}^{2}+2 a \Delta x \\
\Delta x= & v t-\frac{1}{2} a t^{2}
\end{array}
$$

You throw a ball vertically upward from the flat roof of a tall building. The ball
leaves your hand att a point even with the roof railing, with an upward velocity

hand;
(b) the velocity of the ball when it is 5.00 m above the railing; and
(c) the maximum height reached and the time at which it is reached. Ignore he effects of the air.

$$
\begin{aligned}
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& 2.11 \wedge \quad V_{0}=15.0 \mathrm{~m} / \mathrm{s} \\
& \text { p } 53 \\
& \text { (a) find } y+v_{y} \\
& \text { at } t=1.00 s+4.005 \\
& V=N_{0}+a t \quad \Delta y=\left(\frac{V_{0}+V}{2}\right) t \\
& 1 s \rightarrow v=15.0+(-9.8) 1 \\
& =5.20 \mathrm{~m} / \mathrm{s} \\
& \text { Is } \Delta_{y}=\left(\frac{15 \cdot 0+5 \cdot 20}{2}\right) \text {) } \\
& =10.1 \mathrm{~m} \\
& \text { es } \quad V=15.0+(-9.8) 4 \\
& =-24.2 \mathrm{~m} / \mathrm{s} \\
& \text { (b) Velours at } 5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a \Delta y \\
& v^{2}=15 \cdot 0^{2}+2(-9.8) 5 \\
& v=11.3 \mathrm{~m} / \mathrm{s} \\
& +11.3 \mathrm{~m} / \mathrm{s} \text { going up } \\
& -11.3 \mathrm{~m} / \mathrm{s} \text { going down }
\end{aligned}
$$

(c) Max height + time at max height $v=0$

$$
\begin{aligned}
v^{2} & =v_{0}^{2}+2 a \Delta y \\
0 & =15.0^{2}+2(-9.8) \Delta y \\
\Delta y & =11.5 \mathrm{~m} \\
& v \\
\text { max time } & =v_{0}+a t \quad t=1.53 \mathrm{~s} \\
0 & =15.0+(-9.8) t
\end{aligned}
$$

48. - (a) If a flea can jump straight up to a height of 22.0 cm , what is its initial speed (in m/s) as it leaves the ground, neglecting air resistance? (b) How long is it in the air? (c) What are the magnitude and direction of its acceleration while it is (i) moving upward? (ii) moving downward? (iii) at the highest point?

$$
\begin{array}{rc}
v=v_{0}+a t & \Delta x=\left(\frac{v_{0}+v}{2}\right) t \\
\Delta x=v_{0} t+\frac{1}{2} a t^{2} & v^{2}=v_{0}^{2}+2 a \Delta x \\
\Delta x= & v t-\frac{1}{2} a t^{2}
\end{array}
$$

49. A brick is released with no initial speed from the roof of a building and strikes the ground in 2.50 s , encountering no appreciable air drag. (a) How tall, in meters, is the building? (b) How fast is the brick moving just before it reaches the ground? (c) Sketch graphs of this falling brick's acceleration, velocity, and vertical position as functions of time.

$$
\begin{array}{lc}
v=v_{0}+a t & \Delta x=\left(\frac{v_{0}+v}{2}\right) t \\
\Delta x=v_{0} t+\frac{1}{2} a t^{2} & v^{2}=v_{0}^{2}+2 a \Delta x \\
\Delta x= & v t-\frac{1}{2} a t^{2}
\end{array}
$$

49. - A brick is released with no initial speed from the roof of a building and strikes the ground in 2.50 s , encountering no appreciable air drag. (a) How tall, in meters, is the building? (b) How fast is the brick moving just before it reaches the ground? (c) Sketch graphs of this falling brick's acceleration, velocity, and vertical position as functions of time.

Answer

2.48. Set Up: Let $+y$ be upward. $a_{y}=-9.80 \mathrm{~m} / \mathrm{s}^{2} . v_{y}=0$ at the maximum height.

Solve: (a) $y-y_{0}=0.220 \mathrm{~m}, a_{y}=-9.80 \mathrm{~m} / \mathrm{s}^{2}, v_{y}=0 . v_{y}{ }^{2}=v_{0 y}{ }^{2}+2 a_{y}\left(y-y_{0}\right)$ gives

$$
v_{0 y}=\sqrt{-2 a_{y}\left(y-y_{0}\right)}=\sqrt{-2\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.220 \mathrm{~m})}=2.08 \mathrm{~m} / \mathrm{s} .
$$

(b) When the flea returns to ground, $v_{y}=-v_{0 y} . v_{y}=v_{0 y}+a_{y} t$ gives

$$
t=\frac{v_{y}-v_{0 y}}{a_{y}}=\frac{-2.08 \mathrm{~m} / \mathrm{s}-2.08 \mathrm{~m} / \mathrm{s}}{-9.80 \mathrm{~m} / \mathrm{s}^{2}}=0.424 \mathrm{~s}
$$

(c) $a=9.80 \mathrm{~m} / \mathrm{s}^{2}$, downward, at all points in the motion.
2.49. Set Up: Let $+y$ be downward. $a_{y}=9.80 \mathrm{~m} / \mathrm{s}^{2}$

Solve: (a) $v_{0 y}=0, t=2.50 \mathrm{~s}, a_{y}=9.80 \mathrm{~m} / \mathrm{s}^{2}$.

$$
y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}=\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.50 \mathrm{~s})^{2}=30.6 \mathrm{~m} .
$$

NOTE: I take the launch point as zero so I get different answers

(a)
(b) $v_{y}=v_{0 y}+a_{y} t=0+\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(2.50 \mathrm{~s})=24.5 \mathrm{~m} / \mathrm{s}$
(c) The graphs of a_{y}, v_{y}, and y versus t are given in the figure below. Take $y=0$ at the ground.

(b)

(c)

Summary

Motion (CLO3, Chapters 2)

- Δy and Δx can be interchanged.
- For free fall (in the y direction) $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
- For free fall the y component of velocity at the highest point is zero.
- I take the launch point as zero time and zero x and y coordinates.

$$
v_{a v, x}=\frac{\Delta x}{\Delta t}
$$

P1

Ch 2

$$
\begin{gathered}
v=v_{0}+a t \\
\Delta x=\left(\frac{v_{0}+v}{2}\right) t \\
\Delta x=v_{0} t+\frac{1}{2} a t^{2} \\
v^{2}=v_{0}^{2}+2 a \Delta x \\
\Delta x=v t-\frac{1}{2} a t^{2}
\end{gathered}
$$

Take launch point as zero

Slope of tangent
$=$ instantaneous acceleration at A

Use the study area as we go through the slides

VTS Ex 2.1

Use the textbook for more details

PhET The
 moving man

STUDY AREA

Chapter 2 Assets
Video Tutor
Demonstrations

PhET

Simulations

eText

Chapter 2: Motion along a Straight Line

Home > Chapter 2: Motion along a Straight Line > Chapter 2 Asset

Chapter 2 Assets

Video Tutor Solutions
Example 2.1 Swim competition
Example 2.2 Average and instantaneous velocities
Example 2.3 Acceleration in a space walk
Example 2.4 Average and instantaneous accelerations
Example 2.5 Passingspeed
Example 2.6 Passing distance
Example 2.7 Entering the freeway.
Example 2.8 Constant acceleration on a motorcycle
Example 2.9 Pursuit!
Example 2.10 Falling euro in Pisa
Example 2.11 A ball on the roof
Example 2.12 Relative velocity on the highway.
Chapter 2 Bridging Problem

PhET Simulations

Forces in 1 Dimension
The Moving Man
Lunar Lander

Appendix
 Extra information and questions

Using a Spreadsheet

Create an Excel sheet that
(a) Solves example 2.10 in your textbook
(b) Plots a velocity-time graph and a positiontime graph for the same problem.

$$
\begin{array}{ll}
v=v_{0}+a t & \\
\Delta x=\left(\frac{v_{0}+v}{2}\right) t & \\
\Delta x=v_{0} t+\frac{1}{2} a t^{2} & v=0-9.8 t \\
v^{2}=v_{0}^{2}+2 a \Delta x & y=\frac{v t}{2} \\
\Delta x=v t-\frac{1}{2} a t^{2} &
\end{array}
$$

Reading Assignment

- Please read Section 2.7: Relative velocity along a straight line (don't worry about the Theory of Relativity portion at the end of the section)

19. \bullet A physics professor leaves $x(\mathrm{~m})$ her house and walks along the sidewalk toward campus. After 5 min , she realizes that it is raining and returns home. The $200-$ distance from her house as a function of time is shown in Figure 2.46. At which of the labeled points is her velocity
 (a) zero? (b) constant and posi- $\mathbf{\Delta}$ FIGURE 2.46 Problem 19. tive? (c) constant and negative?
(d) increasing in magnitude? and (e) decreasing in magnitude?
*2.19. Set Up: The instantaneous velocity is the slope of the tangent to the x versus t graph.
Solve: (a) The velocity is zero where the graph is horizontal; point IV.
(b) The velocity is constant and positive where the graph is a straight line with positive slope; point I.
(c) The velocity is constant and negative where the graph is a straight line with negative slope; point V .
(d) The slope is positive and increasing at point II.
(e) The slope is positive and decreasing at point III.
